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A Electro-Viscoelastic Contact
Problem Variational analysis of an

electro-viscoelastic problem with an
electrically conductive foundation:

Duale Forms
Besma Founas

Faculty of Sciences, Ferhat Abbas University, Setif 1
E.mail: besma.founas@univ-setif.dz

1. Introduction

La mécanique du contact est un sujet trés vaste, qui embrasse plusieurs phénomènes de contact impliquant des corps déformables abondent en industrie et dans la vie de tous les jours.
Le simple contact entre le piston avec la chemise, la roue avec le rail et d’une chaussure avec le sol ne représentent que trois exemples parmi bien d’autres. Compte tenu du fait que ces
phénomènes jouent un rôle important dans les structures et les systèmes mécaniques, ils ont été intensivement étudiés depuis longue date et la littérature relevant des Sciences de l’Ingénieur
qui leur est dédiée est assez riche.
La piézoélectricité (du grec piézein presser, appuyer) est la propriété que possèdent certains corps de se polariser électriquement sous l’action d’une contrainte mécanique et réciproquement
de se déformer lorsqu’on leur applique un champ électrique. Les deux effets sont indissociables. Le premier est appelé effet piézoélectrique direct, le second effet piézoélectrique inverse. Cette
propriété trouve un très grand nombre d’applications dans l’industrie et la vie quotidienne. Une application parmi les plus familières est l’allume-gaz. Dans un allume-gaz, la pression exercée
produit une tension électrique qui se décharge brutalement sous forme d’étincelles : c’est une application de l’effet direct. De manière plus générale, l’effet direct peut être mis à profit dans la
réalisation de capteurs (capteur de pression etc.) tandis que l’effet inverse permet de réaliser des actionneurs (injecteurs à commande piézoélectrique en automobile, nanomanipulateur. . . ).
Le but de ce mémoire l’étude mathématique d’un problème de contact et une base rigide, en tenant compte de l’effet piézoélectrique voir par exemple [6]. Sous l’hypothése des petites
déformations, nous étudions le processus quasistatique pour de matériaux électro-viscoélastiques [9], ceci constitue une généralisation de l’article [4] et [11]. Les conditions aux limites sont
de type Signorini. Les conditions électriques sont introduites dans le cas où la fondation est conductrice. Les résultats que nous présentons dans ce travail sont essentiellement des résultats
d’existence et d’unicité de la solution ( forme dual ) . De plus pour l’étude de ce problème, nous utilisons essentiellement des méthodes standard sur les inéquations variationnelles elliptiques,
des résultats de monotonie, de convexité et de point fixe.
Problème P : Trouver le champ des déplacements u : Ω× (0, T ) −→ Rd, le champ des contraintes σ : Ω× (0, T ) −→ Sd, un potentiel électrique ϕ : Ω× (0, T ) → R, un champ de déplacement
électrique D : Ω× (0, T )→ Rd tels que:

σ = Aε (u̇) + Gε (u)− E∗E (ϕ) dans Ω× (0, T ) (1)
D = Eε (u) + BE (ϕ) dans Ω× (0, T ) (2)

Divσ + f0 = 0 dans Ω× (0, T ) (3)
÷D = q0 dans Ω× (0, T ) (4)
u = 0 sur Γ1 × (0, T ) (5)
σν = f2 sur Γ2 × (0, T ) (6){

uν ≤ 0 , σv ≤ 0 ,
στ = 0

sur Γ3 × (0, T ) (7)

ϕ = 0 sur Γa × (0, T ) (8)
D.ν = q2 sur Γb × (0, T ) (9)
D.ν=ψ (uν)φ (ϕ− ϕ0) sur Γ3 × (0, T ) (10)
u(0) = u0 sur Ω× (0, T ) (11)

2. Formulation duale

Nous donnons dans cette section une formulation duale du problème P , exprimée en terme de contrainte et de champ des déplacements électriques. Cette formulation faible établie, nous
présentons deux résultats dont le premier concerne l’existence et l’unicité d’une solution faible. Pour définir la formulation duale du problémeP, on considére l’espace de Hilbert Y = H×L2(Ω)d

,muni de produit scalaire donné par
(x, y) = (σ, τ )H + (D,E)L2(Ω)d ∀x = (σ,D), y = (τ, E) ∈ Y

soit Σad(t) l’ensemble des ”contraintes admissibles” donné par
Σad(t) = {τ ∈ H / (τ, ε(v))H ≥ (f (t), v)V ∀v ∈ Uad} . (12)

Nous utilisons également la notation = pour désigner l’ensemble

=(t) =
{
E ∈ L2(Ω)d / (E,∇ψ)L2(Ω)d + (h(u, ϕ), ψ)L2(Ω)d = (q(t), ψ)W ∀ψ ∈ W

}
.

Commençons tout d’abord par un lemme, qui va nous permettre d’introduire la formulation duale du problème P . lemma Si (u, σ,D, ϕ) est une solution classique du problème P, alors (σ,D)
satisfait

σ ∈ Σad(t), (τ − σ, ε( ·u(t)))H ≥ 0, ∀τ ∈ Σad(σ) (13)

−D ∈ =(t), (E + D,∇ϕ)
L2(Ω)d

= 0, ∀E ∈ =. (14)

Probléme PVd.Trouver le champ des contraintes σ : [0, T ]→ H et le champ des déplacements électriques D : [0, T ]→ L2(Ω)d tels que

σ ∈ Σad(t) (K(σ,−D, ε(u0)), τ − σ)H ≥ 0 ∀ τ ∈ Σad(t). (15)

−D ∈ = (H(σ,−D, ε(u0)), E + D)L2(Ω)d = 0 ∀ E ∈ =. (16)

3. theorème

On considère (1)-(16), le problème PVd possède une solution unique (σ,−D) ∈ C([0;T ];H1 ×W1).
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We show that the fifth-order Kadomtsev-Petviashvili II equation

{
∂tu− ∂5xu+ ∂−1x ∂2yu+ u∂xu = 0

u(x, y, 0) = f(x, y),
(1)

where u = u(x, y, t) and (x, y, t) ∈ R3.
is globally well-posed in an anisotropic Gevrey space Gσ1,σ2(R2), which

complements earlier results on the well-posedness of this equation in anisotropic
Sobolev spaces [1].

With

‖f‖Gσ1,σ2 (R2) =

(∫

R2

e2σ1|ξ|e2σ2|η||f̃(ξ, η)|2dξdη
)1/2

.

The method used here for proving lower bounds on the radius of analyticity.
The main function spaces they used are the so-called Bourgain spaces, whose
norm is given by

‖u‖
X
s1,s2,b,ε
σ1,σ2

=

(∫

R3

e2σ1|ξ|e2σ2|η|λ2(s1, s2, b, ε)|û(ξ, η, τ)|2dξdηdτ
) 1

2

,

where

λ(s1, s2, b, ε) = 〈ξ〉s1〈η〉s2〈τ −m(ξ, η)〉b
〈
τ −m(ξ, η)

1 + |ξ|5
〉ε

.

with m(ξ, η) = ξ5 − η2

ξ .

Keywords:KPII equation, Gevrey space, radius of spatial analyticity
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A FIXED POINT THEOREM IN b-METRIC SPACES

MERDACI SEDDIK

Abstract. In this presentation, we prove a fixed point theorem for
contractive mapping has unique fixed point in the context of b-metric
spaces. Also, we present an example to illustrate the validity of the
result obtained in the presentation.
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1. Fixed point theorem

In this section, we several fixed point theorem for contractive mappings
on complete b-metric spaces.

Theorem 1.1. Let (X, d) be a complete b-metric space with a constant s ≥ 1
and f : X → X be a mapping on X. Suppose that q are nonnegative reals
with q < 1, such that the inequality

(1) sd(fx, fy) ≤ qmax

{
d(x, y),

d(x, fx)d(y, fy)

1 + d(fx, fy)

}
,

holds for each x, y ∈ X. Then f has a unique fixed point.
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Abstract : We consider a quasilinear heat system in the presence of an integral term and
establish a general and optimal decay result from which improves and generalizes several
stability results in the literature.
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1 Introduction

In this work, we consider the following problem




A(t) |ut|m−2 ut −∆u+
∫ t
0 g(t− s)∆u(x, s)ds = 0, Ω× (0,+∞),

u(x, t) = 0, ∂Ω× R+,
u(x, 0) = u0(x), Ω,

(1)

where m ≥ 2,Ω is a bounded domain of Rn, n ∈ N∗ := {1, 2, · · · }, with a smooth boundary
∂Ω, g : R+ → R+ is a positive nonincreasing function, and

A : R+ →Mn(R)

is a bounded square matrix satisfying A ∈ C (R+) and, for some positive constant c0,

(A(t)v, v) ≥ c0|v|2, ∀t ∈ R+,∀v ∈ Rn,

where (·, ·) and | · | are the inner product and the norm, respectively, in Rn. The equation in
consideration arises from various mathematical models in engineering and physics.
In this work, we discuss (1) when g is of a more general decay, and establish a general and
optimal decay result, which improves those of Berrimi and Messaoudi [1], Liu and Chen [2], and
Messaoudi and Tellab [3]. For the relaxation function g we assume that
(G1) The function g : R+ → R+ is a differentiable function satisfying

g(0) > 0 and 1−
∫ +∞

0
g(s)ds = l > 0.

(G2) There exist a constant p ∈ [1, 3/2) and a nonincreasing differentiable function ξ : R+ → R+

satisfying
g′(t) ≤ −ξ(t)gp(t), ∀t ∈ R+.

(G3) We also assume that

2 ≤ m ≤ 2n

n− 2
, if n ≥ 3, m ≥ 2 if n = 1, 2.

Our main result is the following
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Theorem 1 Let u be the solution of (1). Then, there exist two strictly positive constants λ0
and λ1 such that the energy satisfies, for all t ∈ R+,

E(t) ≤ λ0e−λ1
∫ t
0 ξ(s)ds, if p = 1,

E(t) ≤ λ0
(

1 +
∫ t
0 ξ

2p−1(s)ds
) −1

2p−2
, if p > 1.

Moreover, if ξ and p in (G2) satisfy

∫ +∞

0

(
1 +

∫ t

0
ξ2p−1(s)ds

) −1
2p−2

dt < +∞,

then, for all t ∈ R+.

E(t) ≤ λ0
(

1 +

∫ t

0
ξp(s)ds

) −1
p−1

, if p > 1.
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A DYNAMIC FRICTIONAL CONTACT PROBLEMS

GOVERNED BY A VARIATIONAL AND

HEMIVARIATIONAL INEQUALITIES IN

VISCOELASTICITY

L. AIT KAKI

Abstract. We consider a dynamic problem that describes a frictional
contact with damage between a viscoelastic body and a foundation. The
contact is supposed bilateral and frictional, which includes the dam-
age effects and consider a nonmonotone and multivalued subdifferential
boundary conditions for the contact friction flux. The model consists of
the system of the hemivariational inequality of hyperbolic type for the
displacement and the parabolic variational inequality for the damage.
The existence of solutions is proved by using some results from the the-
ory of hemivariational inequalities, evolutionary variational inequalities,
and fixed point arguments.
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A FINITE-TIME BLOW-UP RESULT FOR A CLASS OF

SOLUTIONS WITH POSITIVE INITIAL ENERGY FOR

COUPLED SYSTEM OF HEAT EQUATIONS WITH

MEMORIES

ABDELKADER BRAIK1, YAMINA MILOUDI2, AND KHALED ZENNIR3

Abstract. In this work, we are interested by a system of heat equations
with initial condition and zero Dirichlet boundary conditions. We prove
a finite-time blow-up result for a large class of solutions with positive
initial energy.

2010 Mathematics Subject Classification. 35K05; 35B44; 93D20;
93C10.
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1. Define the problem

Here, we are going to study the blow up in finite time of solutions for the
following system:

(1)





u′ −∆xu+t
0 η1(t− s)∆xu(s)ds = f(u, v) in Ω× (0, T ),

v′ −∆xv +t
0 η2(t− s)∆xv(s)ds = g(u, v) in Ω× (0, T ),

(u, v) = (0, 0) on ∂Ω× (0, T ),
(u(0), v(0)) = (u0, v0) in Ω,

where Ω is bounded domain in Rn, n ≥ 1 with smooth boundary ∂Ω and
r is a real constant satisfies

(2)

{
r > 2 if n = 1; 2,

2 < r < 2(n−1)
n−2 if n ≥ 3.

and

f(u, v) = |u+ v|r−2(u+ v) + |u| r−4
2 u|v| r2 ,

g(u, v) = |u+ v|r−2(u+ v) + |v| r−4
2 v|u| r2 .
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A GLOBAL SOLUTION TO A MASS CONSERVED ALLEN

CAHN PROBLEM

ADJA MERYEM, AND BOUSSAID SAMIRA

Abstract. We attempt to prove the existence and uniqueness of a
global solution for an Allen Chan mass conserved problem, which models
a phase transition. The proof relies on the monotonicity method where
the nonlinear diffusion operator satisfies the properties of monotonicity.

Keywords and phrases. Allen Cahn problem, Mass conservation,
Monotonicity method.

1. Define the problem

We consider here a reaction-diffusion equation given by a nonlocal mass
conserved Allen-Cahn problem, which models a phase transition in binary
mixture.
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A NONLINEAR BOUNDARY VALUE PROBLEM

INVOLVING A MIXED FRACTIONAL DIFFERENTIAL

EQUATION

NORA OUAGUENI AND YACINE ARIOUA

Abstract. In this work, we discuss a special type of nonlinear bound-
ary value problems which involves both right-sided Caputo-Katugampola
and left-sided Katugampola fractional derivatives. To study the exis-
tence and uniqueness of solutions for the aforementioned problem, we
have first written it in the form of a Volterra integral equation then we
have used Banach’s contraction principle.

The First Online International Conference on Pure and Ap-
plied Mathematics (IC-PAM’21). May 26-27, 2021, Ouargla, AL-
GERIA.

Keywords and phrases. Volterra integral equation, mixed fractional
derivatives, nonlinear boundary value problems.

1. Define the problem

Our objective in this work is to discuss the existence and uniqueness of
solution for the following nonlinear BVP:

(1) CDβ,ρ
1−
(
Dα,ρ

0+
y
)
(t) = g(t, y(t)), t ∈ [0, 1],

with

(2)
(
I1−α,ρ
0+

y
)
(0) = 0,

(3)
(
Dα,ρ

0+

)
y(1) = 0,

where α, β ∈ (0, 1), ρ > 0, CDβ,ρ
1− is the right Caputo-Katugampola fractional

derivative of order β. Dα,ρ
0+

is the left Katugampola fractional derivative of

order β and I1−α,ρ0+ is the Katugampola fractional integral.
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A PROBLEM OF MINIMIZATION SUBJECT TO A

DIFFERENTIAL INCLUSION BY THE SUBDIFFERENTIAL

FENNOUR FATIMA AND SOUMIA SAÏDI

Abstract. The paper proposes a minimization problem subject to a
differential inclusion governed by the subdifferential of a time-dependent
proper convex lower semi-continuous function with a single-valued per-
turbation.

2010 Mathematics Subject Classification. 34A60, 49J52, 49J53
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tor, optimal solution.

1. Statement of the problem

Let I := [0, T ]. For each t ∈ I, let ϕ(t, ·) be a proper lower semi-continuous
and convex function. Set L := {h ∈ L2

R(I) : |h(t)| ≤ 1 a.e.}. Let J :
I × R × R −→ [0,+∞[ be measurable and such that J(t, ·, ·) is lower semi-
continuous on R× R for every t ∈ I, and J(t, x, ·) is convex on R for every
(t, x) ∈ I ×H.
Then, we prove that the minimization problem

min
h∈L

∫ T

0
J
(
t, uh(t), h(t)

)
dt

subject to

(Ph)




−u̇h(t) ∈ ∂ϕ(t, uh(t)) + h(t), a.e. t ∈ I
uh(t) ∈ domϕ(t, ·), ∀ t ∈ I
uh(0) = u0 ∈ domϕ(0, ·)

has an optimal solution, where uh denotes the unique absolutely continuous
solution associated with the control h ∈ L.
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ABOUT PROPERTIES OF MEROMORPHIC SOLUTIONS

OF ULTRAMETRIC q-DIFFERENCE EQUATIONS OF

SHRÖDER-TYPE

SALIH BOUTERNIKH AND TAHAR ZERZAIHI

Abstract. Let K be an algebraically closed field, complete for an ul-
trametric absolute value, let A(K) the K-algebra of entire functions in
K and M(K) the field of meromorphic functions in K i.e. the field of
fonctions f such that f = h/g, with h, g ∈ A(d(0, R−)).

We investigate the growth of transcendental meromorphic solutions
of some ultrametric q-difference equations and find the order of growth
of these solutions. our method is based on the ultrametric Nevanlinna
theory.

2010 Mathematics Subject Classification. 30G06, 11J97, 12H10.

Keywords and phrases. Ultrametric meromorphic functions, Value
distribution theory, q-Difference equations.

1. Define the problem

In this paper, we consider the ultrametric functional equation of Shröder-

type:
∑n

j=1Aj(x)f(qjx) = R(x, f(x)) =
P (x, f(x))

Q(x, f(x))
, where q is an element

of K, A1(x), . . . , An(x) are rational functions and P, Q are relatively prime
polynomials in f over the field of rational functions satisfying p = degf P ,
t = degf Q, d = p− t > 2.
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ANALYSIS OF A FRICTIONAL CONTACT PROBLEM

WITH ADHESION FOR PIEZOELECTRIC MATERIALS

LATRECHE SOUMIA AND SELMANI LYNDA

Abstract. This work is devoted to the study of the mathematical
model involving a quasistatic frictional contact between an electro-elasto-
viscoplastic body and a conductive adhesive foundation. The contact is
described with a normal compliance condition with adhesion, the as-
sociated general version of Coulombs law of dry friction in which the
adhesion of contact surfaces is taken into account and a regularized elec-
trical conductivity condition. We derive a variational formulation of the
problem and state that, under a smallness assumption on the surface
conductance, there exists a unique weak solution for the model. The
proof is based on arguments of time-dependent variational inequalities,
differential equations and Banach fixed point theorem.

2010 Mathematics Subject Classification. 74M15, 74M10, 74F15,
74D10.

Keywords and phrases. Electro-elasto-viscoplastic materials, qua-
sistatic process, internal state variable, frictional contact, normal com-
pliance, adhesion, weak solution, fixed point.

1. Introduction

The aim of this work consists on the study of a contact problem for piezo-
electric materials. We investigate a mathematical model which describes the
frictional contact between a deformable body assumed to be electroelasto-
viscoplastic with internal state variable and a conductive adhesive founda-
tion. The contact is modeled with a normal compliance condition, the asso-
ciated general version of Coulombs law of dry friction in which the adhesion
is taken into account and a regularized electrical conductivity condition.
We deal with the study of a quasistatic problem of frictional adhesive contact
for general electro-elasto-viscoplastic materials of the form

σ(t) =Aε(u̇(t)) + Fε(u(t))− E∗E(ϕ(t))

+

t∫

0

G(σ(s)−Aε(u̇(s)) + E∗E(ϕ(s)), ε(u(s)),k(s))ds,(1)

(2) k̇(t) = φ(σ(t)−Aε(u̇(t)) + E∗E(ϕ(t)), ε(u(t)),k(t)),

(3) D(t) = Eε(u(t))−B∇ϕ(t),

where u is displacement field, σ and ε(u) are the stress and the linearized
strain tensor, respectively. D is the electric displacement field. Here A and
F are operators describing the purely viscous and the elastic properties of
the material, respectively. G is a nonlinear constitutive function describing

1
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2 LATRECHE SOUMIA AND SELMANI LYNDA

the viscoplastic behavior of the material and depending on the internal state
variable k and φ is also a nonlinear constitutive function which depends on
k. E is the electric field that satisfies E(ϕ) = −∇ϕ, where ϕ is the electric
potential. Also, E represents the third order piezoelectric tensor, E∗ is its
transposed and B denotes the electric permittivity tensor. Frictional and
frictionless contact problems involving electro-elasto-viscoelastic constitu-
tive law were studied in [1, 5].
We assume the decomposition of the form σ = σEV P + σE , where σE =
−E∗E(ϕ) = E∗∇ϕ is the electric part of the stress and σEV P is the elastic-
viscoplastic part of the stress which satisfies

k̇(t) = φ(σEV P (t)−Aε(u̇(t)), ε(u(t)),k(t)).

A frictionless contact for elastic-viscoplastic materials with or without in-
ternal state variable were considered in [3, 4].
When G = 0 the constitutive law (1)-(3) reduces to the electro-viscoelastic
law given by (3) and

σ(t) = Aε(u̇(t)) + Fε(u(t)) + E∗∇ϕ(t).

A frictional contact problem for an electro-viscoelastic body was considered
in [2].
When G = 0 and A = 0 the constitutive law (1)-(3) becomes the electro-
elastic constitutive law given by (3) and

σ(t) = Fε(u(t)) + E∗∇ϕ(t).

This work is structured as follows. First, we present notation and some pre-
liminaries. Then, we give the mathematical model of the problem and the
variational formulation. Finally, we present our main result and its proof
which is based on arguments of time-dependent variational inequalities, dif-
ferential equations and fixed point.
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APPLICATION OF FIXED POINT THEOREM FOR STUDY

EXISTENCE OF POSITIVE SOLUTIONS FOR BOUNDARY

VALUE PROBLEMS.

ZOUAOUI BEKRI AND SLIMANE BENAICHA

Abstract. In this paper, we applied the Leray-Schauder nonlinear al-
ternative and Leray-Schauder fixed point theorem for study existence of
positive solutions for fifth-order boundary value problem of the form

u(5)(t) = q(t)f(t, u(t), u
′
(t), u

′′
(t), u

′′′
(t), u(4)(t)), 0 < t < 1,

u(0) = u
′
(1) = u

′′
(0) = u

′′′
(1) = u(4)(0) = 0,

where f ∈ C([0, 1]×[0,∞)×[0,∞)×(−∞, 0]×(−∞, 0]×[0,∞)→ [0,∞)).
As an application, we also given an example to illustrate the results
obtained.

2010 Mathematics Subject Classification. 34B15, 34B18.

Keywords and phrases. Green’s function, Positive solution, Leary-
Schauder nonlinear alternative, Fixed point theorem, Boundary value
problem.

1. Introduction

Fixed point theorems are the basic mathematical tools in showing the
existence of solutions in various kinds of equations. The fixed point theory
is at the heart of nonlinear analysis as it provides the tools necessary to have
existence theorems in many different nonlinear problems. She uses her tools
of analysis and topology and for this reason we have the classification fixed
point and metric theory and fixed point and topological theory.

Motivated by the above works, the aim of this paper is to apply the Leray-
Schauder nonlinear alternative and Leray-Schauder fixed point theorem for
study existence of positive solutions for fifth-order boundary value problem

u(5)(t) = q(t)f(t, u(t), u
′
(t), u

′′
(t), u

′′′
(t), u(4)(t)), 0 < t < 1.(1)

u(0) = u
′
(1) = u

′′
(0) = u

′′′
(1) = u(4)(0) = 0,(2)

where q : [0, 1] → [0,∞), f : [0, 1] × [0,∞) × [0,∞) × (−∞, 0] × (−∞, 0] ×
[0,∞)→ [0,∞), are continuous.

This article is organized as follows. In section 2, we present some defini-
tions that will be used to prove the results. Then, in section 3, we present
and prove our main results which consists of existence theorems for positive
solution of the (1) − (2) without imposing any nonnegativity condition on
f . And we establish some existence criteria of at least one positive solution
by using the Leray-Schauder nonlinear alternative and Leray-Schauder fixed
point theorem. Finally, in section 4, as an application, we give an example
to illustrate the results we obtained.

1
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2 ZOUAOUI BEKRI AND SLIMANE BENAICHA

2. Preliminaries

In this section, we present some definitions, Leray-Schauder nonlinear
alternative and Leray-Schauder fixed point theorem.

Definition 2.1. Let E be a real Banach space. A nonempty closed convex
set P ⊂ E is called a cone of E if it satisfies the following two conditions

(1) x ∈ P, λ > 0 implies λx ∈ P,
(2) x ∈ P,−x ∈ P implies x = 0.

Definition 2.2. An operator is called completely continuous if it is contin-
uous and maps bounded sets into precompact sets.

Definition 2.3. Suppose P is a cone in a Banach space E. The map α is
a nonnegative continuous concave functional on P provided α : P → [0,∞)
is continuous and

α(rx+ (1− r)y) ≥ rα(x) + (1− r)α(y)

for all x, y ∈ P and r ∈ [0, 1]. Similarly, we say the map β is a nonnegative
continuous convex functional on P provided β : P → [0,∞) is continuous
and

β(rx+ (1− r)y) ≤ rβ(x) + (1− r)β(y)

for all x, y ∈ P and r ∈ [0, 1].

We shall use the well-known Leray-Schauder fixed point theorem and
Leray-Schauder nonlinear alternative to search for positive solution of the
problem (1)− (2).

Theorem 2.4. ([1, 2]). Let E be Banach space and Ω be a bounded open
subset of E, 0 ∈ Ω. T : Ω→ E be a completely continuous operator. Then,
either

(i) there exists u ∈ ∂Ω and λ > 1 such that T (u) = λu, or
(ii) there exists a fixed point u∗ ∈ Ω.

3. Mains results

In this section, we shall impose growth conditions on f , which allow us
to apply Leray-Schauder nonlinear alternative, and Leray-Schauder fixed
point theorem to establish the existence of at least one positive solution to
the (1)− (2), and we assume that q(t) ≡ 1.

Lemma 3.1. Let E = {u ∈ C4([0, 1]) : u(0) = u
′
(1) = u

′′
(0) = u

′′′
(1) = 0}

be the Banach space equipped with the maximum norm

‖u‖ = max{|u|0, |u
′ |0, |u

′′ |0, |u
′′′ |0, |u(4)|0},

where |u|0 = max0≤t≤1 |u(t)|. Then for any u ∈ E, we have

‖u‖ = |u(4)|0 and |u|0 ≤
5

24
‖u‖, |u′ |0 ≤

1

3
‖u‖, |u′′ |0 ≤

1

2
‖u‖, |u′′′ |0 ≤ ‖u‖.

Proof. Let G(t, s) be the Green’s function of fourth-order homogeneous
boundary value problem

u(4)(t) = 0, 0 < t < 1,
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APPLICATION OF FIXED POINT THEOREM FOR STUDY EXISTENCE OF POSITIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEMS.3

with

u(0) = u
′
(1) = u

′′
(0) = u

′′′
(1) = 0.

Then

(3) G(t, s) =
1

6





(6t− 3t2 − s2)s, 0 ≤ s ≤ t ≤ 1,

(6s− 3s2 − t2)t, 0 ≤ t ≤ s ≤ 1.

By (3) it is easy to know that

(4) G(t, s) ≥ 0,
∂G(t, s)

∂t
≥ 0,

∂2G(t, s)

∂t2
≤ 0,

∂3G(t, s)

∂t3
≤ 0,

and ∫ 1

0
|G(t, s)|ds =

∫ 1

0
G(t, s)ds =

1

24
t4 − 1

6
t3 +

1

3
t,

∫ 1

0
|∂G(t, s)

∂t
|ds =

∫ 1

0

∂G(t, s)

∂t
ds =

1

6
t3 − 1

2
t2 +

1

3
,

∫ 1

0
|∂

2G(t, s)

∂t2
|ds = −

∫ 1

0

∂2G(t, s)

∂t2
ds = −1

2
t2 + t,

∫ 1

0
|∂

3G(t, s)

∂t3
|ds = −

∫ 1

0

∂3G(t, s)

∂t3
ds = 1− t.

From which we get

max
0≤t≤1

∫ 1

0
|G(t, s)|ds =

5

24
, max

0≤t≤1

∫ 1

0
|∂G(t, s)

∂t
|ds =

1

3
,

max
0≤t≤1

∫ 1

0
|∂

2G(t, s)

∂t2
|ds =

1

2
, max

0≤t≤1

∫ 1

0
|∂

3G(t, s)

∂t3
|ds = 1.

Let u ∈ E and ‖u‖ = r. Then

u(t) =

∫ 1

0
G(t, s)[u(4)(s)]ds, u

′
(t) =

∫ 1

0

∂G(t, s)

∂t
[u(4)(s)]ds,

u
′′
(t) =

∫ 1

0

∂2G(t, s)

∂t2
[u(4)(s)]ds, u

′′′
(t) =

∫ 1

0

∂3G(t, s)

∂t3
[u(4)(s)]ds.

Thus

|u|0 ≤ max
0≤t≤1

∫ 1

0
|G(t, s)||u(4)(s)|ds ≤ |u(4)|0 max

0≤t≤1

∫ 1

0
|G(t, s)|ds =

5

24
|u(4)|0,

|u′ |0 ≤ max
0≤t≤1

∫ 1

0
|∂G(t, s)

∂t
||u(4)(s)|ds ≤ |u(4)|0 max

0≤t≤1

∫ 1

0
|∂G(t, s)

∂t
|ds =

1

3
|u(4)|0,

|u′′ |0 ≤ max
0≤t≤1

∫ 1

0
|∂

2G(t, s)

∂t2
||u(4)(s)|ds ≤ |u(4)|0 max

0≤t≤1

∫ 1

0
|∂

2G(t, s)

∂t2
|ds =

1

2
|u(4)|0,

|u′′′ |0 ≤ max
0≤t≤1

∫ 1

0
|∂

3G(t, s)

∂t3
||u(4)(s)|ds ≤ |u(4)|0 max

0≤t≤1

∫ 1

0
|∂

3G(t, s)

∂t3
|ds = |u(4)|0.

So, |u(4)|0 = ‖u‖ = r and the proof is completed. �
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4 ZOUAOUI BEKRI AND SLIMANE BENAICHA

Theorem 3.2. Suppose that f ∈ C([0, 1] × [0,∞) × [0,∞) × (−∞, 0] ×
(−∞, 0] × [0,∞), [0,∞)) and f(t, 0, 0, 0, 0, 0) 6= 0, t ∈ [0, 1]. Suppose there
exist nonnegative functions ai ∈ L1[0, 1], i = 0, 1, 2, 3, 4, 5, such that

(5) B =
5

24

∫ 1

0
a0(s)ds+

1

3

∫ 1

0
a1(s)ds+

1

2

∫ 1

0
a2(s)ds+

∫ 1

0
a3(s)ds+

∫ 1

0
a4(s)ds < 1,

and for any (t, u0, u1, u2, u3, u4) ∈ [0, 1]×[0, 5
24ρ]×[0, 13ρ]×[−1

2ρ, 0]×[−ρ, 0]×
[0, ρ], f satisfies

(6) f(t, u0, u1, u2, u3, u4) ≤ a0(t)u0+a1(t)u1−a2(t)u2−a3(t)u3+a4(t)u4+

a5(t),

where ρ = A(1−B)−1, A =
∫ 1
0 a5(s)ds. Then problem (1)− (2) has at least

one positive solution u∗ ∈ C5([0, 1]) such that

24

5
max
0≤t≤1

u∗(t) ≤ 3 max
0≤t≤1

(u∗)
′
(t) ≤ 2 max

0≤t≤1
[−(u∗)

′′
(t)] ≤ max

0≤t≤1
[−(u∗)

′′′
(t)] ≤

max
0≤t≤1

(u∗)(4)(t) ≤ ρ.

Proof. Since f(t, 0, 0, 0, 0, 0) 6= 0 and |f(t, 0, 0, 0, 0, 0)| ≤ a5(t), t ∈ [0, 1], we

have A =
∫ 1
0 a5(s)ds > 0, so, it follows from (3) that ρ > 0. From equation

(1) and boundary condition u(4)(0) = 0 we have

u(4)(t) =

∫ 1

t
f(τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ), u(4)(τ))dτ,

which implies that

u(t) =

∫ 1

0
G(t, s)

∫ 1

s
f(τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ), u(4)(τ))dτds, t ∈ [0, 1],

where G(t, s) is defined by (3). Let Ωρ = {u ∈ E, ‖u‖ < ρ}, then Ωρ is a
bounded closed convex set of E and 0 ∈ Ωρ. For u ∈ Ωρ, define the operator
T by

(7) (Tu)(t) =

∫ 1

0
G(t, s)

∫ 1

s
f(τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ), u(4)(τ))dτds.

Then

(Tu)
′
(t) =

∫ 1

0

∂G(t, s)

∂t

∫ 1

s
f(τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ), u(4)(τ))dτds,

(Tu)
′′
(t) =

∫ 1

0

∂2G(t, s)

∂t2

∫ 1

s
f(τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ), u(4)(τ))dτds

(Tu)
′′′

(t) =

∫ 1

0

∂3G(t, s)

∂t3

∫ 1

s
f(τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ), u(4)(τ))dτds,

(Tu)(4)(t) =

∫ 1

t
f(τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ), u(4)(τ))dτ, t ∈ [0, 1].

So, (Tu)(0) = (Tu)
′
(1) = (Tu)

′′
(0) = (Tu)

′′′
(1) = (Tu)(4)(0) = 0. There-

fore, T : Ωρ → E. By Ascoli-Arzela Theorem, it is easy to know that this
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operator T : Ωρ → E is a completely continuous operator. So, the problem
(1)− (2) has a solution u = u(t) if and only if u solves the operator equation
Tu = u.

Suppose there exists u ∈ ∂Ωρ, λ > 1 such that Tu = λu. Noticing that
‖u‖ = ρ, it follows from lemma 3.1 that

|u|0 ≤
5

24
ρ, |u′ |0 ≤

1

3
ρ, |u′′ |0 ≤

1

2
ρ, |u′′′ |0 ≤ ρ, |u(4)|0 = ρ.

Thus from (3), (4) and (5) we have λρ = λ‖u‖ = ‖Tu‖ = max0≤t≤1 |u(4)(t)|

= max
0≤t≤1

|
∫ 1

t
f(s, u(s), u

′
(s), u

′′
(s), u

′′′
(s), u(4)(s))ds|

= max
0≤t≤1

∫ 1

t
f(s, u(s), u

′
(s), u

′′
(s), u

′′′
(s), u(4)(s))ds

=

∫ 1

0
f(s, u(s), u

′
(s), u

′′
(s), u

′′′
(s), u(4)(s))ds

≤
∫ 1

0
[a0(s)u(s)+a1(s)u

′
(s)−a2(s)u

′′
(s)−a3(s)u

′′′
(s)+a4(s)u

(4)(s)+a5(s)]ds

≤
∫ 1

0
[

5

24
a0(s)ρ+

1

3
a1(s)ρ+

1

2
a2(s)ρ+a3(s)ρ+a4(s)ρ+a5(s)]ds

= [
5

24

∫ 1

0
a0(s)ds+

1

3

∫ 1

0
a1(s)ds+

1

2

∫ 1

0
a2(s)ds+

∫ 1

0
a3(s)ds+

∫ 1

0
a4(s)ds]ρ+

∫ 1

0
a5(s)ds

= Bρ+A = Bρ+(1−B)ρ = ρ,

a contradiction. So, by Theorem 2.4, T has a fixed point u∗ ∈ E, which
is a solution of the problem (1) − (2). Noticing that f(t, 0, 0, 0, 0, 0) 6= 0,
we assert that u = 0 is not a solution of the (1) − (2), therefore, |u∗|0 > 0.
It follows from (3.2) that u∗(t) is nondecreasing and concave on [0, 1], thus
u∗(t) ≥ t|u∗|0 > 0 for t ∈ [0, 1], i.e., u∗(t) is a positive solution of the problem
(1)− (2). This completes the proof. �

4. Example

In order to illustrate the above results, we consider an example.

Example 4.1. Consider the following problem SBVP

(8)
u(5) =

√
t

26 u+ t15

2 u
′ − t11

4 u
′′ − 3√t

59 u
′′′

+ t4

7 u
(4) + t3 + 1,

u(0) = u
′
(1) = u

′′
(0) = u

′′′
(1) = u(4)(0) = 0.

Set

f(t, u0, u1, u2, u3, u4) =

√
t

26
u0 +

t15

2
u1 −

t11

4
u2 −

3
√
t

59
u3 +

t4

7
u4 + t3 + 1,

and

a0(t) =

√
t

26
, a1(t) = t15, a2(t) =

t11

4
, a3(t) =

3
√
t

59
, a4(t) =

t4

7
,

a5(t) = t3 + 2.

It is easy to prove that ai ∈ L1[0, 1], i = 0, 1, 2, 3, 4, 5, are nonnegative
functions, f(t, 0, 0, 0, 0, 0) = t3 + 1 6= 0.
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Moreover, we have

B =
2

15

∫ 1

0
a0(s)ds+

5

24

∫ 1

0
a1(s)ds+

1

3

∫ 1

0
a2(s)ds+

1

2

∫ 1

0
a3(s)ds+

∫ 1

0
a4(s)ds,

=
2

15

∫ 1

0

√
s

26
ds+

5

24

∫ 1

0
s15ds+

1

3

∫ 1

0

s11

2
ds+

1

2

∫ 1

0

3
√
s

59
ds+

∫ 1

0

s4

7
ds

=
2

585
+

5

384
+

1

144
+

3

472
+

1

35
' 0, 056 < 1,

and for any

(t, u0, u1, u2, u3, u4) ∈ [0, 1]× [0,
5

24
ρ]× [0,

1

3
ρ]× [−1

2
ρ, 0]× [−ρ, 0]× [0, ρ],

and f satisfies

f(t, u0, u1, u2, u3, u4) ≤ a0(t)u0+a1(t)u1−a2(t)u2−a3(t)u3+a4(t)u4+a5(t).

where

A =

∫ 1

0
a5(s)ds =

9

4
, ρ = A(1−B)−1 ' 2.383.

Hence, by theorem 3.2, the BVP (8) has at least one positive solution u∗ in
C5([0, 1]) such that

24

5
max
0≤t≤1

u∗(t) ≤ 3 max
0≤t≤1

(u∗)
′
(t) ≤ 2 max

0≤t≤1
[−(u∗)

′′
(t)] ≤ max

0≤t≤1
[−(u∗)

′′′
(t)] ≤

max
0≤t≤1

(u∗)(4)(t) ≤ ρ.
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ASYMPTOTIC BEHAVIOR OF A NONLINEAR
THERMOELASTIC SYSTEM WITH MEMORY TYPE

AMEL BOUDIAF

Abstract. In this work we study a nonlinear system of thermoelastic-
ity, where the viscoelastic dissipation is acting on a part of the boundary,
for certain initial data and suitable conditions, we establish a general
decay result, from which the usual exponential and polynomial decay
are only special cases.

2010 Mathematics Subject Classification. 35B37, 35L55, 74D05,
93D15, 93d20.

Keywords and phrases. Thermoelasticity, General decay, Memory,
Nonlinear source.

1. Introduction

In the present work we study the following system
(1)8>>>>>><>>>>>>:

utt � �4 u� (�+ �)r (divu) + �r� = jujp�2 u in 
� (0;+1)
c�t � k4 � + �divut = 0 in 
� (0;+1)

u (:; 0) = u0; ut (:; 0) = u1; � (:; 0) = �0; x 2 

u (x; t) = �

R t
0 g (t� s)

�
�@u@� + (�+ �) (divu) �

�
(s) ds on �1 � R+

u0 = 0; x 2 �1; � = 0; x 2 @
; t � 0;
u = 0; x 2 �0; t � 0;

with c; k; �; �; � are positive constants, where �; � are lame moduli, 
 is a
bounded domain of Rn; with a smooth boundary @
; such that f�0 [ �1g
is a partition of @
; with meas (�1) > 0; � is the outward normal to @
;
u = u (x; t) 2 Rn is the displacement vector, � = � (x; t) is the di¤erence
temperature, and g is the relaxation function considered to be positive and of
general decay and the boundary condition on �1 is the nonlocal viscoelastic
condition responsible for the memory e¤ect. Our aim here is to establish
a general decay result, from which the usual exponential and polynomial
decay are only special cases.
Preliminaries
In order to establish our result we shall make the following assumption
(H) There exists x0 in Rn; for which m (x) = x� x0 satis�es

m (x) :� � � > 0; 8x 2 �1 and m (x) :� � 0; 8x 2 �0:

First, we will use the boundary condition
(2)

u (x; t) = �
Z t

0
g (t� s)

�
�
@u

@�
+ (�+ �) (divu) �

�
(s) ds; x 2 �1; t � 0;

1
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2 AMEL BOUDIAF

to estimate the boundary term �@u@� + (�+ �) (divu) �: De�ning the convo-
lution product operator by

(g � ') (t) =
Z t

0
g (t� s)' (s) ds;

and di¤erentiating Eq. (2) ; we obtain

�
@u

@�
+(�+ �) (divu) �+

1

g (0)

�
g0 �

�
�
@u

@�
+ (�+ �) (divu) �

��
= � 1

g (0)
ut on �1�R+:

Applying Volterra�s inverse operator, we get

�
@u

@�
+ (�+ �) (divu) � = � 1

g (0)
(ut + k � ut) on �1 � R+:

Denoting by � = 1
g(0) ; we arrive at

(3) �
@u

@�
+ (�+ �) (divu) � = ��

�
ut + k (0)u+ k

0 � u
�

on �1 � R+:

We then de�ne

(4) (g 
 ') (t) : =
Z t

0
g (t� s) j' (t)� ' (s)j2 ds;

and

(5) (g � ') (t) : =
Z t

0
g (t� s) (' (t)� ' (s)) ds:

Lemma 1.1. (Reference [4]) If g; ' 2 C1 (R+) ; then
(6)

(g � ')'t = �
1

2
g (t) j' (t)j2+1

2
g0
'�1

2

d

dt

�
g 
 '�

�Z t

0
g (s) ds

�
j' (t)j2

�
:

2. Decay of solutions

In this section we discuss the asymptotic behavior of the solutions of
system (1) when the resolvent kernel k satis�es

(7) k (0) > 0; k (t) � 0; k0 (t) � 0; k00 (t) �  (t)
�
�k0 (t)

�
;

where  : R+ ! R+ is a function satisfying the following conditions

(8)  (t) > 0; 0 (t) � 0; and
Z +1

0
 (t) dt = +1:

It is clear that  is decreasing [hence 0 (t) � 0] :
By multiplying Eq. (1)1 by ut and Eq. (1)2 by � and integrating over


; using integration py parts and boundary conditions (3) and (6) ; one can
easily �nd that the �rst order energy of system (1) is given by

E (t) =
1

2

Z



h
� jruj2 + jutj2 + (�+ �) (divu)2 + c j�j2

i
dx(9)

�1
p

Z


jujp dx� �

2

Z
�1

k0 
 u d�1 +
�

2

Z
�1

k (t) juj2 d�1:
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Remark 1. By multiplying equation (1) by ut and � respectively, integrating
over 
 and using integration by parts and the boundary condition, we get
(10)

E0 (t) � �k
Z


jr�j2��

Z
�1

jutj2+
�

2
k0 (t)

Z
�1

juj2��
2

Z
�1

Z t

0
k
00
(t� s) ju (t)� u (s)j2 ds � 0;

for t in [0; T ) : This means that the energy is uniformly bounded (by E (0))
and is decreasing in t:

Theorem 2.1. Given (u0; u1; �0) 2
�
H1
0 � L2 (
)�H1

0

�
: Assume that (H)

and (7) and (8) hold, with

(11) limK (t)
t!1

= 0:

Then, for some t0 large enough, we have, 8t � t0:

E (t) � cE (0) e�a
R t
0 (s)ds;

where a is the �xed positive constant and c is a generic positive constant.

The main idea of proof is to construct a Lyapunov functional L (t) equiv-
alent to E (t) : To do this we use the multiplier techniques.
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ASYMPTOTIC STABILITY FOR A VISCOELASTIC KIRCHHOFF
EQUATION WITH VERY GENERAL TYPE OF RELAXATION

FUNCTIONS

MESLOUB AHLEM1 AND MESLOUB FATIHA2

Abstract. In this paper we consider a nonlinear viscoelastic equation with
minimal conditions on the L1(0,∞) relaxation function g namely g′ (t) ≤
−ξ (t)H (g (t)), where His an increasing and convex function near the origin
and ξ is a nonincreasing function. With only these very general assumptions
on the behavior of gat infinity, we establish optimal explicit and general en-
ergy decay results from which we can recover the optimal exponential and
polynomial rates when H(s) = sp and pcovers the full admissible range [1, 2).

1. Preliminaries

In this work, we consider nonlinear viscoelastic Kirchhoff equation
(1.1)

|ut|ρ utt −∆utt −
(
ξ0 + ξ1 ‖∇u(t)‖2L2(Ω) + σ(∇u(t),∇ut(t)L2(Ω)

)
∆u

+

t∫
0

g (t− s) ∆u(s)ds = u |u|γ
in Ω× R+

u(x, t) = 0 on ∂Ω× R
u(x, 0) = u0, ut(x, 0) = u1, in Ω

M(t) = ξ0 + ξ1 ‖∇u(t)‖2L2(Ω) + σ(∇u(t),∇ut(t)L2(Ω)

where

M(t) ≥ m0 ∀t > 0

Here Ω is a bounded domain of Rn (n ≥ 1) with a smooth boundary ∂Ω, ξ0,
ξ1 and σ are positive constants, min {ρ, γ} > 0 and (n − 2) max {ρ, γ} ≤ 2, the
integral term is a finite memory responsible for the viscoelastic damping where g
is a positive decreasing function called the relaxation function, and the right hand
side of (1.1)1is a source term.
First, we consider the following assumptions

(A): g : [0,∞)→ (0,∞)is a differentiable function satisfying

(1.2) m0 −
+∞∫
0

g (s) ds = l > 0

Key words and phrases. nonlinear viscoelastic Kirchhoff equation, stability,energy, General
decay.
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and there exists a C1 function H : (0,∞) → (0,∞) which is linear or it is
strictly increasing and strictly convex C2 function on (0, r], r ≤ g (0) , with
H (0) = H ′ (0) = 0, such that

(1.3) g′ (t) ≤ −ζ (t)H (g (t)) , ∀t ≥ 0

where ξ is a positive nonincreasing differentiable function.
(B): The constants ρ and γ satisfy

min {ρ, γ} > 0 and (n− 2) max {ρ, γ} ≤ 2.

We use the standard Lebesgue and Sobolev spaces, with their usual scalar
products and norms, and the following Sobolev—Poincaré inequality

(1.4) ‖φ‖q ≤ cq ‖∇φ‖2 , φ ∈ H1
0 (Ω)

for 2 ≤ q ≤ 2n/(n − 2) if n ≥ 3 or q ≥ 2 if n = 1, 2. Throughout this
paper, c is used to denote a generic positive constant. Now, we introduce
the energy functional

E (t) : =
1

2 + ρ

∫
Ω

{|ut|ρ+2}dx+
1

2


ξ0 +

ξ1

2
‖∇u(t)‖2L2(Ω) −

t∫
0

g (s) ds

 ‖∇u(t)‖2L2(Ω)


+

1

2

∫
Ω

∇u2
t (t)dx+

1

2
(g�∇u) (t)− 1

2 + γ

∫
Ω

|u|γ+2
dx

where

(g�v) (t) =

∫
Ω

t∫
0

g (t− s) |v (t)− v (s)|2 dsdx,

and the functional

J (t) = J (u, ut) :=

1−
t∫

0

g (s) ds

∫
Ω

|∇u|2 dx+

∫
Ω

|∇ut|2 dx−
∫
Ω

|u|γ+2
dx.

Proposition 1. Assume that (A) and (B) hold and u0, u1 ∈ H1
0 (Ω) satisfy

(1.5) β =
cγ+2
γ+2

l

(
2 (γ + 2)

γl
E (u0, u1)

) γ
2

< 1 and J (u0, u1) > 1

where cγ + 2 is the best constant in (2.3) with q = γ + 2, then problem (1.1) has a
unique global bounded solution satisfying

u, ut ∈ C
(
R+;H1

0 (Ω)
)
, utt ∈ L2

(
R+;H1

0 (Ω)
)

and, for any t ≥ 0,

(1.6) l ‖∇u‖22 + ‖∇ut‖22 ≤
2 (γ + 2)

γ
E (0) .
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2. Stability

In this section we state and prove our main result.

Theorem 1. Assume that (A) and (B) hold and u0, u1 ∈ H1
0 (Ω) satisfy (1.5).

Then there exist positive constants k1 ≤ 1 and k2 such that, along the solution of
(1.1), the energy functional satisfies

(2.1) E (t) ≤ k2H
−1
1

k1

t∫
g−1(r)

ξ (s) ds

 where H1 (t) =

r∫
t

1

sH ′ (s)
ds.

Here, H1 is strictly decreasing and convex on (0, r], with

lim
t→0

H1 (t) = +∞.

Remark 1. so, if we define H0 (t) =
∫ r
t

1
H(s)ds, then H0 is strictly decreasing and

convex on (0, r], with lim
t→0

H0 (t) = +∞, and H0 (g (t)) ≥
t∫

g−1(r)

ξ (s) ds which means

g (t) ≤ H−1
0

 t∫
g−1(r)

ξ (s) ds

 , ∀t ≥ g−1 (r) .

Also, it is evident, by the properties of H, H0 and H1, that

H1 (t) =

r∫
t

1

sH ′ (s)
ds ≤

∫ r

t

1

H (s)
ds = H0 (t) =⇒ H−1

1 (t) ≤ H−1
0 (t)
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AN ESTIMATION ON HYPER-ORDER OF SOLUTIONS OF

COMPLEX LINEAR DIFFERENTIAL EQUATIONS WITH

ENTIRE COEFFICIENTS OF SLOW GROWTH

AMINA FERRAOUN AND BENHARRAT BELAÏDI

Abstract. In this paper, we study the growth of meromorphic solu-
tions of higher order linear differential equations with entire coefficients
and we obtain some estimations on the hyper-order and hyper conver-
gence exponent of zeros of these solutions. We extend some results due
to L. Wang, H. Liu [4] and C. Y. Zhang, J. Tu [5] .

2010 Mathematics Subject Classification. 34M10, 30D35.

Keywords and phrases. meromorphic functions, differential equa-
tions, growth.

1. Introduction and main results

Differential equations in the complex domain is an area of mathemat-
ics admitting several ways of approach. One of the investigated approach
is Nevanlinna’s theory. This theory deals with value distribution of mero-
morphic functions in the complex plane. In this past century, Nevanlinna’s
theory helped many authors to study the complex differential equations by
obtaining many valuable results concerning the growth and oscillation of the
solutions of these equations.

As a result, many authors investigated the growth of solutions of the
higher order linear differential equations

(1) f (k) +Ak−1(z)f
(k−1) + · · ·+A1(z)f

′ +A0(z)f = F (z),

and

(2) f (k) +Ak−1(z)f
(k−1) + · · ·+A1(z)f

′ +A0(z)f = QeP ,

when Aj(z) (j = 0, 1, · · · , k− 1), F (z)(6≡ 0), Q(z)(6≡ 0) are entire (or mero-
morphic) functions and P is a transcendental entire function and obtained
some valuable results when there exists some coefficient As(z) (0 ≤ s ≤ k−1)
in equation (1) verifying the condition µ(As) <

1
2 or when F (z) is of infinite

order which is the case in equation (2), (see e.g. [1], [2], [4], [5]).
For k ≥ 2, we consider the linear differential equation

(3) Ak(z)f
(k) +Ak−1(z)f

(k−1) + · · ·+A1(z)f
′ +A0(z)f = F (z),

whenAj(z) (j = 0, 1, · · · , k), F (z) are entire functions such thatA0AkF 6≡ 0.
Many studies showed that if Ak(z) ≡ 1, then all solutions of (3) are entire
functions, but when Ak(z) is a nonconstant entire function, then equation
(3) can possess meromorphic solutions.

1

31



2 AMINA FERRAOUN AND BENHARRAT BELAÏDI

For instance the equation

zf ′′′ + 4f ′′ +
(
−1− 1

2z
2 − z

)
e−zf ′ +

((
1− 1

2z
2 + 2z

)
e−2z + ze−3z

)
f

=
(
−1− 1

2z
2 − z

)
e−z +

(
z − 1

2z
3 + 2z2

)
e−2z + z2e−3z

has a meromorphic solution f (z) = 1
z2
ee

−z
+ z. Thus, we considered the

following questions: firstly, what are the properties of solutions of the linear
differential equation (3), when there exists some coefficient As(z) (0 ≤ s ≤ k)
verifying the condition µ(As) <

1
2? and secondly, how about the growth of

meromorphic solutions of the linear differential equation

(4) Ak(z)f
(k) +Ak−1(z)f

(k−1) + · · ·+A1(z)f
′ +A0(z)f = QeP ,

when Aj(z) (j = 0, 1, · · · , k), Q(z)(6≡ 0) are entire functions and P is a tran-
scendental entire function? In this paper, we answered the above questions
by obtaining the following results.

Theorem 1.1. ([3]) Suppose that A0(z), · · · , Ak(z), F (z)(6≡ 0) are entire
functions of finite order. If there exists some s ∈ {0, 1, · · · , k} such that

α = max {σ(Aj), (j 6= s), σ(F )} < µ(As) <
1

2
,

then
(i) Every transcendental meromorphic solution f of (3) such that λ

(
1
f

)
<

µ(f), satisfies µ(As) ≤ σ2(f) ≤ σ(As). Furthermore, if F 6≡ 0, then we have
µ(As) ≤ λ̄2(f) = λ2(f) = σ2(f) ≤ σ(As).

(ii) If s ≥ 2, then every rational solution f of (3) is a polynomial with
deg f ≤ s − 1. If s = 0 or 1, then every nonconstant solution f of (3) is
transcendental.

Corollary 1.2. ([3]) Suppose that A0(z), · · · , Ak(z), F (z)(6≡ 0) are entire
functions. If there exists some s ∈ {0, 1, · · · , k} such that

α = max {σ(Aj), (j 6= s), σ(F )} < µ(As) = σ(As) <
1

2
,

then every transcendental meromorphic solution f of (3) such that λ
(

1
f

)
<

µ(f) satisfies λ̄2(f) = λ2(f) = σ2(f) = σ(As), and every rational solution
f of (3) is a polynomial with deg f ≤ s− 1.

Theorem 1.3. ([3]) Suppose that A0(z), · · · , Ak(z), Q(z)(6≡ 0) are entire
functions of finite order, P is a transcendental entire function such that

max {σ(P ), σ(Q), σ(Aj), (1 ≤ j ≤ k)} < µ(A0) <
1

2
.

Then every solution f of (4) is transcendental, and every transcendental

meromorphic solution f of (4) such that λ
(

1
f

)
< µ(f) satisfies µ(A0) ≤

λ̄2(f) = λ2(f) = σ2(f) ≤ σ(A0).
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Corollary 1.4. ([3]) Suppose that A0(z), · · · , Ak(z), Q(z)(6≡ 0) are entire
functions of finite order, P is a transcendental entire function such that

max {σ(P ), σ(Q), σ(Aj), (1 ≤ j ≤ k)} < µ(A0) = σ(A0) <
1

2
.

Then every solution f of (4) is transcendental, and every transcendental

meromorphic solution f of (4) such that λ
(

1
f

)
< µ(f) satisfies λ̄2(f) =

λ2(f) = σ2(f) = σ(A0).
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ANALYSE D’UN SYSTÈME DIFFÉRENTIEL
FRACTIONNAIRE PERTURBÉ

MOHAMED OMANE, SAFIA MEFTAH, AND LAMINE NISSE

Abstract. The theory of perturbations and the asymptotic analysis
concerning ordinary differential equations are widely developed in the
mathematical literature. On the other hand, for the fractional case,
there are significantly fewer publications in this field of scientific re-
search.
To schematize one considers a problem (of Cauchy or with the limiting
values) of the form

Pεu = 0

One of the objectives of this theory is to analyze, and determine the
behavior of the solution of the problem when ε tends towards zero.
The work studies the convergence of a solution of a fractional differential
system perturbed at Capito sans with initial conditions (a case study of
the order perturbation of the fractional derivation and its approach to
1 on the left and right or the order enter 0 and 1.

Keywords and phrases. perturbation,Gronwell theorem,fractional
derivatives ,Mittag-Leffler function.

1. Differential problem (having an perturbe fractional order
next to the one :

We have the problem :
(pε−)





(cD1−εuε)(t) = f(t, uε(t)), 0 < 1 − ε < 1

uε(0) = uε,0 , t ∈ [0, T ] , T < +∞

(pε+)




(cD1+εuε)(t) = f(t, uε(t)), 0 < ε < 1

uε(0) = uε,0 , t ∈ [0, T ] , T < +∞

u
′
ε(0) = εµ0

where : ∥f∥ = max0≤t≤T | f(t, y) |= M , M ∈ R+ ∀y ∈ Rn , let the function
f be cuntinuous and fulfill a Lipschitz condition with respect to the second
variable ,i.e;

| f(t, y) − f(t, z) |≤ L | y − z |, ∀t ∈ [0, T ]
1
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The solution to this problem(pε−) is given by relation :

Uε(t) = uε,0 +
1

Γ(1 − ε)

∫ t

0
(t − s)−ε f(s, uε(s)) ds

The solution to this problem (pε+)is given by relation :

uε(t) = uε,0 + tεµ0 +
1

Γ(1 + ε)

∫ t

0
(t − s)ε f(s, uε(s)) ds

but the problem (p0) is of order 1 :




(Du)(t) = f(t, u(t)),

u(0) = u0, t ∈ [0, T ]

accepts a single solution :

u(t) = u0 +

∫ t

0
f(s, u(s)) ds

What is relationship between :

uε(t) and u(t) ? when ε −→ 0 and t ∈ [0, T ]

uε(t) :solution of Differential problem the same fractional derivative are
perturbe order et u(t):solution of a non perturbe Differential problem of
the first order
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Our purpose in this article is to study the well-posedness and regularity for the coupled
Kotewege-de Varie (KdV) system.
We proved the local well-posedness in analytic Gevrey spaced and we studied the Gevrey’s
regularity in time variable.





ut + uxxx + wwx = 0
wt + βwxxx + (uw)x = 0, x ∈ Tγ , t ∈ R, 0 < β < 1
(u,w) |t=0= (u0, w0).

(1)

where Tγ = [0, 2πγ) for some γ ≥ 1.

The analytic Gevrey spaces with γ ≥ 1 are given by Gσ,δ,s(Tγ) = Gσ,δ,s. For s ∈ R,
δ > 0 and σ ≥ 1, let us define

Gσ,δ,s(Tγ) =

{
f ∈ L2(Tγ); ‖f‖2Gσ,δ,s(Tγ) =

∑

k∈Z
e2δ|k|

1/σ 〈k〉2s |f̂(k)|2dξ <∞
}
, (2)

where 〈·〉 = (1 + | · |).
At a time, the analytic Gevrey-Bourgain spacesXβ

σ,δ,s,b(Tγ×R) = Xβ
σ,δ,s,b andXσ,δ,s,b(Tγ×

R) = Xσ,δ,s,b are defined by

‖u‖Xσ,δ,s,b(Tγ×R) =

(∑

k∈Z

∫

R
e2δ|k|

1/σ 〈k〉2s
〈
τ − k3

〉2b | û(k, τ) |2 dτ
) 1

2

, (3)

‖w‖
X
β
σ,δ,s,b

(Tγ×R) =

(∑

k∈Z

∫

R
e2δ|k|

1/σ 〈k〉2s
〈
τ − βk3

〉2b | ŵ(k, τ) |2 dτ
) 1

2

. (4)

1
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The proof of local well-posedness is based on the iteration in the spaces Xσ,δ,s,1/2 ×
Xβ
σ,δ,s,1/2.and the spaces Yσ,δ,s(Tγ × R) = Yσ,δ,s and Y βσ,δ,s(Tγ × R) = Y βσ,δ,s defined via

the norms
‖u‖Yσ,δ,s = ‖u‖Xσ,δ,s,1/2 + ‖eδ|k|1/σ 〈k〉s û(k, τ)‖L2

k
(T/γ)L1

τ (R) (5)

and
‖w‖

Y
β
σ,δ,s

= ‖w‖
X
β
σ,δ,s,1/2

+ ‖eδ|k|1/σ 〈k〉s ŵ(k, τ)‖L2
k
(T/γ)L1

τ (R) (6)

For any interval I ⊂ R, we define the localized spaces Y Iσ,δ,s = Yσ,δ,s(Tγ × I) and Y β,Iσ,δ,s =

Y βσ,δ,s(Tγ × I) with the norms

‖u‖Y I
σ,δ,s

= inf
{
‖U‖Yσ,δ,s ;U |(Tγ×I) = u

}
(7)

and

‖w‖
Y
β,I
σ,δ,s

= inf

{
‖W‖

Y
σ,β
δ,s

;W |(Tγ×I) = w

}
(8)
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APPLICAION OF HOMOTOPY ANALYSIS METHOD TO

THE VARIABLE COEFFICIENT KDV-BURGERS

EQUATION

AHCENE BOUKEHILA

Abstract. The paper presents an application of the homotopy analy-
sis method for solving the Variable Coefficient KdV-Burgers Equation.
In this method a series is created, sum of which (if the series is con-
vergent) gives the solution of discussed equation. Conditions ensuring
convergence of this series are presented in the paper. Error of approxi-
mate solution, obtained by considering only partial sum of the series, is
also estimated. Its validity is verified by comparing the approximation
series with the known exact solution. And different from perturbation
techniques, this approach is independent upon any small/large pertur-
bation quantities. So, the basic ideas of this approach can be employed
to search for multiple solutions of strongly nonlinear problems in science
and engineering.

2010 Mathematics Subject Classification. 65R20 45G10, 45A05.

Keywords and phrases. Homotopy analysis method, KdV-Burgers
Equation, Convergence.

1. Statement of the problem

The Gelfand equation represents the steady state of diffusion and transfer
of heat conduction see [1]. In this paper, based on the homotopy analy-
sis method [2], a new approach is proposed to solve multiple solutions of
strongly nonlinear problems by using Gelfand equation

(1)

{
△u + λeu, x ∈ [0, 1],

u(0) = u(1) = 0

Note that the Gelfand equation contains an exponent term exp(u) and thus
has very strong nonlinearity. And different from perturbation techniques,
this approach is independent upon any small/large perturbation quantities.
So, the basic ideas of this approach can be employed to search for multiple
solutions of strongly nonlinear problems in science and engineering.
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ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR A

VISCOELASTIC EQUATION WITH NONLINEAR

BOUNDARY DAMPING AND SOURCE TERMS

BILLEL GHERAIBIA AND NOURI BOUMAZA

Abstract. In this paper, we consider the initial boundary value prob-
lem for the viscoelastic equation with nonlinear boundary damping and
source terms. Under suitable assumptions on the relaxation function,
we will concern the global existence, general decay, and blow-up result
of solutions.

2010 Mathematics Subject Classification. 35L70, 35B40, 35B35.

Keywords and phrases. Viscoelastic equation, Nonlinear boundary
conditions, Global existence, General decay, blow-up.

1. Define the problem

In this paper, we study the initial boundary value problem for the fol-
lowing viscoelastic equation with nonlinear boundary damping and source
terms



utt − div[a(x)∇u] +

∫ t

0
g(t− s)div[a(x)∇u(s)]ds = 0, Ω× (0,+∞)

u = 0, Γ0 × (0,+∞)

a(x)
∂u

∂v
− a(x)

∫ t

0
g(t− s)∂u

∂v
ds+ |ut|m−2ut = |u|p−2u, Γ1 × (0,+∞)

u(x, 0) = u0(x), ut(x, 0) = u1(x), Ω,

where Ω ⊂ Rn (n ≥ 1), ∂Ω = Γ0 ∪ Γ1, mes(Γ0) > 0, Γ0 ∩ Γ1 = ∅, ∂u
∂ν

denotes the unit outer normal derivative, p, m > 2, a(x) and g(t) are positive
functions, and u0, u1 are given functions belonging to suitable spaces.
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BLOW UP OF SOLUTIONS FOR A HYPERBOLIC-TYPE

EQUATION WITH DELAY TERM AND LOGARITHMIC

NONLINEARITY

HAZAL YÜKSEKKAYA AND ERHAN PİŞKİN

Abstract. In this paper, we consider a hyperbolic-type equation with
delay term and logarithmic nonlinearity in a bounded domain. Under
suitable conditions, we prove the blow up of solutions in a finite time.
Generally, time delay effects arise in many applications and practical
problems such as physical, chemical, biological, thermal and economic
phenomena. We study more general version of the equation:

utt − uxx + u− εu log |u|2 = 0.
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Keywords and phrases. Blow up, Delay term, Hyperbolic equation.
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BLOW-UP, EXPONENTIAL GROWTH OF SOLUTION FOR
A NONLINEAR PARABOLIC EQUATION WITH

p (x)�LAPLACIAN

AMAR OUAOUA

Abstract. In this paper, we consider the following equation

(1) ut � div
�
jrujp(x)�2ru

�
+ ! jujm(x)�2 ut = b jujr(x)�2 u:

We prove a �nite time blowup solutions in the case ! = 0;
and exponential growth in the case ! > 0; with the negative
initial energy in the both cases:

2010 Mathematics Subject Classification. 35B40; 35L90.

Keywords and phrases. Nonlinear parabolic equation, p (x)�Laplacian,
Blow-up, Exponential grouth.

1. Define the problem

Equation (1) can be viewed as a generalization of the evolutional p-
Laplacian equation

(2) ut � div
�
jrujp�2ru

�
+ ! jujm�2 ut = b jujr�2 u;

with the constant exponent p; m; r 2 (2; 1) ; which appears in various
physical contexts. In particular, this equation arises from the mathematical
description of the reaction-di¤usion/ di¤usion, heat transfer, population dy-
namics processus, and so on (see [11]) and references therein). Recently in
[1], in the case ! = 0; Agaki proved an existence and blow up result for the
initial datum u0 2 Lr(
): Ôtani [17] studied the existence and the asymp-
totic behavior of solutions of (2) and overcome the di¢ culties caused by the
use of nonmonotone perturbation theory. The quasilinear case, with p 6= 2,
requires a strong restriction on the growth of the forcing term jujr�2u, which
is caused by the loss of the elliptic estimate for the p�Laplacian operator
de�ned by �pu = div(jrujp�2ru) (see [8]).
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Abstract

In this talk, we present existence results for positive solutions to the singular φ-Lpalcian
boundary value problem

{
−(φ(u′))′ = a(t)f(t, u, u′), t ∈ (0,+∞)
u(0) = lim

t→+∞
u′(t) = 0,

where φ : R→ R is an increasing homeomorphism such that φ(0) = 0, a : (0,+∞)→ R+ is
a measurable function with a(t) > 0 a.e. t in some interval of (0,+∞) and the nonlinearity
f : R+× (0,+∞)× (0,+∞)→ R+ is continuous and may exhibit singular at the solution
and at its derivative.

Key words: φ-Laplacian, positive solution, singular boundary value problem.
2010 Mathematics Subject Classification: 34B15, 34B16, 35B18, 34B40.

1 Introduction and main results

This talk concerns existence of positive solutions to the second order boundary value problem
(bvp for short) {

− (φ(u′))′ (t) = a(t)f(t, u(t), u′(t)) a.e. t > 0,
u(0) = lim

t→+∞
u′(t) = 0, (1.1)

where φ : R → R is an increasing homeomorphism such that φ(0) = 0, a : (0,+∞) → R+ is
a measurable function with a(t) > 0 a.e. t in some interval of (0,+∞) and the nonlinearity
f : R+ × (0,+∞)2 → R+ is continuous and may exhibit singular at u = 0 and u′ = 0.

By a positive solution to the bvp (1.1), we mean a function u in C1 ([0,+∞) ,R) such that
u > 0 in (0,+∞) and φ (u′) is absolutely continuous on compact intervals of [0,+∞), satisfying
all equations in (1.1).

Our approach in this talk is based on a fixed point formulation and since the weight a and the
nonlinearity f will supposed to be nonnegative functions, we will use in this work an adapted
version of the Guo-Krasnoselskii’s expansion and compression of a cone principal. Because
of the singular nature of the nonlinearity f as well as its dependance on the first derivative
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and the boundary conditions in (1.1), we look for solutions in the cone of nonnegative and
concave function belonging to the linear space E of all fonctions u ∈ C1 ([0,+∞)) , satisfying
u(0) = lim

t→→+∞
u′(t) = 0.

Notice that functions u in E can be bounded, such is the case for u0(t) = t
1+t

, or unbounded
as u1(t) = ln(1 + t). we provide in this talk conditions which guarantee the boundedness or the
unboundedness of the obtained solution. In the following, we set ψ : = φ−1 and we suppose
that a, φ and f satisfy the following conditions:

{
there exists α > 0 such that for all t ∈ [0, 1]
and u ∈ R+, φ(tu) ≥ tαφ(u),

(1.2)

|a|1 =

∫ +∞

0

a(s)ds <∞; (1.3)





For all R > 0 there exists a nonincreasing function
ψR : (0,+∞)→ (0,+∞) such that
f(t, (1 + t)w, z) 6 ψR (w) for all t, w, z ≥ 0 with w ≤ R

and
∫ +∞
0

a(t)ψR (rρ̃(t)) dt <∞ for all r ∈ (0, R] .

(1.4)

where

ρ̃(t) =
ρ(t)

1 + t
and ρ(t) =

{
t if t ∈ [0, 1]
1
t

if t ≥ 1,




lim
t→+∞

tψ

(∫ +∞

t

a(s)f(s, λ, µ)ds

)
= +∞

uniformly for λ, µ in compact intervals of (0,+∞),
(1.5)





For all R > 0 there exists a function φR : (0,+∞)→ (0,+∞)
such that f(t, (1 + t)w, z) 6 φR (t) for all t, w, z ≥ 0 with w ≤ R

and
∫ +∞
0

ψ
(∫ +∞

s
a(r)φR (r) dr

)
<∞.

(1.6)

The statement of the main result in this talk needs to introduce the following notations.
Let θ > 1 be fixed and set Iθ = [1/θ, θ],

f 0 = lim sup
|(w,z)|→0

(
sup
t≥0

f(t,(1+t)w,z)
φ(w+z)

)
, f∞ = lim sup

|(w,z)|→+∞

(
sup
t≥0

f(t,(1+t)w,z)
φ(w+z)

)
,

f0 (θ) = lim inf
|(w,z)|→0

(
min
t∈Iθ

f(t,(1+t)w,z)
φ(w)

)
, f∞ (θ) = lim inf

|(w,z)|→+∞

(
min
t∈Iθ

f(t,(1+t)w,z)
φ(w)

)
,

Γ = (2α |a|1)
−1 , Θ(θ) = (1 + θ)2α(θ)α

(∫ θ
1
θ
a(r)dr

)−1
.

where |(w, z)| = sup (|w| , |z|) .

Theorem 1.1 Assume that Hypotheses (1.2)-(1.4) hold and there exists θ > 1 such that one
of the following conditions

f 0 < Γ, Θ(θ) < f∞ (θ) (1.7)

and
f∞ < Γ, Θ(θ) < f0 (θ) (1.8)
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is satisfied. Then bvp (1.1) has at least one positive solution u. Moreover, if Hypothesis (1.6)
holds then the solution u is bounded and if Hypothesis (1.5) holds, then the solution u is un-
bounded (i.e. lim

t→+∞
u(t) = +∞).

Since for all t, w, z > 0

f(t, (1 + t)w, z)

φ(w + z)
≤ f(t, (1 + t)w, z)

φ(w)

we have

f 0 ≤ f 0
+ = lim sup

w→0

(
sup
t,z>0

f(t,(1+t)w,z)
φ(w+z)

)
, f0 (θ) ≥ f−0 (θ) = lim inf

w→0

(
inf

t∈Iθ,z>0

f(t,(1+t)w,z)
φ(w)

)
,

f∞ ≤ f∞+ = lim sup
w→+∞

(
sup
t,z>0

f(t,(1+t)w,z)
φ(w+z)

)
, f∞ (θ) ≥ f−∞ (θ) = lim inf

w→+∞

(
inf

t∈Iθ,z>0

f(t,(1+t)w,z)
φ(w)

)
,

Moreover, notice that if the following hypothesis




for all R > 0 there exists a function ωR : (0,+∞)→ (0,+∞)
such that f(t, u, v) ≥ ωR (t) for all t, u, v > 0 with u ≤ R

and limt→+∞ tψ
(∫ +∞

t
a(r)ωR (r) dr

)
= +∞,

(1.9)

holds, then the nonlinearity f satisfies (1.5).
The above remarks and Theorem 1.1 lead to the following corollary:

Corollary 1.2 Assume that Hypotheses (1.2)-(1.4) hold and there exists θ > 1 such that one
of the following conditions

f 0
+ < Γ, Θ(θ) < f−∞ (θ)

and
f∞+ < Γ, Θ(θ) < f−0 (θ)

is satisfied. Then the bvp (1.1) has at least one positive solution u. Moreover, if Hypothesis
(1.6) holds then the solution u is bounded and if Hypothesis (1.9) holds, then the solution u is
unbounded.

2 Abstract Background

Let X be a linear space and let ‖·‖N and p be respectively a norm and a semi-norm on X such
that (X, ‖·‖) is a Banach space, where for x ∈ X, ‖x‖ = max (‖x‖N , p(x)) . Let K be a cone
in X, that is: K is nonempty closed and covex such that K ∩ (−K) = ∅ and tK ⊂ K for all
t ≥ 0. The main result of this work will be proved by means of the following theorem:

Theorem 2.1 ([9], Theorem 2.8) Let r1, r2 be two positive real numbers such that r1 < r2
and let T : K ∩ (Ω2rΩ1) → K be a compact mapping where for i = 1, 2, Ωi = {u ∈ E, ‖u‖N <
ri}. If one of the following conditions
(a) ‖Tu‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Tu‖N ≥ ‖u‖N for u ∈ K ∩ ∂Ω2,
(b) ‖Tu‖N ≥ ‖u‖N for u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2.
is satisfied, then T has at least a fixed point in K ∩ (Ω2 \ Ω̄1).
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The above theorem is a new version of expansion and compression of a cone principal in a
Banach space. Its improvement consists in the fact that it does not require bounded sets.

3 Example

Consider the bvp (1.1) in the case where

φ(x) = |x|p−2 x+ |x|q−2 x, 1 < p < q

a(t) =
1

(1 + t)ξ
, ξ > 1

and

f(t, u, v) =

((
Au

1 + t

)m−1
+

(
Bu

1 + t

)n−1)(
2 +

z

1 + z
+ sin

(
1 + t

u
+

1

v

))

with A,B > 0, m < n and n > 1.
Using Corollary 1.2, bvp (1.1) admits a positive solutions in suitable siuations.
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Closed range positif operators on Hilbert spaces
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Abstract

Let H be a complex Hilbert space and B(H) the algebra of all bounded linear
operators on H. The reduced minimum modulus of an operator S ∈ B(H) is
defined by

γ(S) :=

{
inf{||Sx||; ||x|| = 1, x ∈ N (S)⊥} if S ̸= 0

+∞ if S = 0.

In this paper, we show that if S is a positif operator and α > 0, then R(S) is
closed if and only if γ(Sα) > 0. In this case R(S) = R(Sα). Also in this paper,
We study the Moore-Penrose inverse of a positif operator.

Keywords: Closed range operator, The reduced minimum modulus, Moore-
Penrose inverse.
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CONTROLLABILITY OF DELAY FRACTIONAL SYSTEMS

DJALAL BOUCENNA

Abstract. In this work, some sufficient and necessary conditions the
complete controllable of fractional linear system with delays in the state
are established. Further, the complete controllability result for a semi-
linear fractional system with delays in the state are studied by using
Krasnoselskii’s fixed point theorem. Finally, numerical examples are
given to illustrate our results.

Keywords and phrases. fractional systems, controllability, delays in
the state.
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DERIVATION RANGE AND THE IDENTITY OPERATOR

NADIA MESBAH AND HADIA MESSAOUDENE

Abstract. The main objective of this paper is to present some results
about classes of operators where the distance between the identity op-
erator and the derivation range is minimal or maximal.
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Keywords and phrases. Range of derivation, identity operator, finite
operator, reduced spectrum.

Abstract

Let B(H) be the algebra of all bounded linear operators on a complex and
infinite dimensional Hilbert space H. The additive mapping δA,B : B(H)→
B(H) defined by δA,B(X) = AX − XB, for all A, B, X ∈ B(H) is called
generalized derivation associated with (A,B). If A = B, then δA,A = δA is
called the inner derivation implemented by A ∈ B(H).

It is known that the identity operator I is not a commutator, i.e. I /∈
R (δA) for any A ∈ B(H), where R (δA) denotes the range of δA. However,

J. H. Anderson [1] showed that there are operators A for which I ∈ R(δA),

where R(δA) is the closure of R (δA) in the norm topology. This allowed him
to define a new class of operators called:

JA(H) = {A ∈ B(H) : I ∈ R(δA)}
= {A ∈ B(H); ∃(Xn) ∈ B(H) : AXn −XnA→ I} ,

which is the class of operators where the distance between the identity op-
erator and the derivation range is minimal.

The class of operators A in B(H), where the distance between the inner
derivation range R(δA) and the identity operator I is maximal, is called
finite operators class and noted by F(H). In other words, A ∈ B(H) is a
finite operator if :

‖AX −XA− I‖ ≥ 1; ∀ X ∈ B(H).

The purpose of this work is to prove that JA(H) have not an algebraic
structure and that F (H) is a field, give some sufficient and necessary con-
ditions that the identity operator be in the closure of the range of an inner
derivation and to present some results concerning the form of operators in
JA(H) and F (H) .
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POSITIVE PERIODIC SOLUTIONS FOR AN ITERATIVE

HEMATOPOIESIS MODEL

AHLÈME BOUAKKAZ1 AND RABAH KHEMIS2

Abstract. In this work, an iterative hematopoiesis model is investi-
gated. By utilizing Schauder’s fixed point theorem and some properties
of a Green’s function, we establish some new existence results about pos-
itive periodic solutions of the model. Our main results which improve
and generalize the past literature.

2010 Mathematics Subject Classification. 34K13, 34A34, 34C60.

Keywords and phrases. Haematopoiesis model, positive periodic so-
lution, Schauder’s fixed point theorem.

1. The problem

This paper deals with the existence of periodic solutions of the following
iterative hematopoiesis model with periodic coefficients:

(1) x′ (t) = −a (t)x (t) + p (t)
n∑

i=1

xm (t− τ (t))

1 + x[i] (t)
,

where m ≥ 0, x[n] (t) is the n−th iterate of x (t) and a, p are continuous
periodic functions on R+.

Equation (1) describes the dynamics of hematopoiesis (blood cell pro-
duction) where x (t) is the density of mature cells in blood circulation at
time t, a (t) is the destruction rate, p (t) is the maximal production rate,
n∑

i=1

p (t)xm (t− τ (t))

1 + x[i] (t)
denotes the flux of the cells into the circulation from

the stem cell compartment which involves two type of delays, a time-varying
delay τ (t) representing the average of cell cycles and multiple implicit delays
of the form τi (t, x (t)) depending on both the time and the state variable
and representing times required to produce mature cells.
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CONTINUITY OF PSEUDO-DIFFERENTIAL OPERATORS

ON LOCALIZED BESOV-TYPE SPACES

AISSA DJERIOU

Abstract. We will study the continuity of some pseudo-differential
operators on the localized Besov–type spaces

(
Bs,τp,q (Rn)

)
`r

, under some
conditions on s and τ.

2010 Mathematics Subject Classification. Pseudo-differential op-
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1. Introduction and the main result

In this work, we will be interested by the Besov–type spaces Bs,τ
p,q (Rn), is

the set of f ∈ S ′, such that

‖f‖q
Bs,τp,q

= sup
x∈Rn,J∈Z

1

|B (x, 2−J)|τ/q
∑

j≥J
(2jsq

∥∥∥F−1ϕj · f̂
∥∥∥
q

Lp(BJ (x,2−J ))
,

where {ϕj}j∈N0
is the smooth dyadic resolution of unity in Rn.

We denote by (Bs,τ
p,q (Rn))`r the localized of Besov–type space , Let β ∈

C∞ where suppβ ⊂ B(0, Q) with Q >
√
n, and satisfying

(1)
∑

j∈Zn
β (x− j) = 1, (∀x ∈ Rn) .

Let 1 ≤ p, q, r ≤ ∞. The space (Bs,τ
p,q (Rn))`r is the collection of all f ∈ S ′,

such that

‖f‖(Bv,τp,q )`r :=
( ∑

k∈Zn
‖τkψ · f‖rBs,τp,q

)1/r
,

We will study on (Bs,τ
p,q (Rn))`r the continuity of (ps.d.o.) σ (x,D) which is

defined by

σ(x,D)f(x) = (2π)−n
∫

Rn
eix·ξσ (x, ξ) f̂ (ξ) dξ ,

where σ is a complex-valued and sufficiently differentiable function defined
on Rn × Rn. The general literature concerning the continuity of ps.d.o on
Besov space Bs

p,q(Rn), or on Triebel–Lizorkin space F sp,q (Rn), can be found
in the different works, as [4]. We recall the set Sm1,δ (ω,N) of the type
Hörmander class, which presents basic tool in the theory of ps.d.o, see e.g.
[1]. Let the function:

σα,β(x, ξ) := (1 + |ξ|)|α|−δ|β|−m∂αξ ∂βxσ(x, ξ),
1
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where α, β ∈ Nn with |β| ≤ N. σα,β is satisfies, for all x, ξ ∈ Rn, the
estimates

(2) |σα,β(x, ξ)| ≤ c1 ,

(3) |σα,β(x+ h, ξ)− σα,β(x, ξ)| ≤ c2 ω(|h| |ξ|δ) ,
where ω is a positive nondecreasing function, vanishing near the origin and
concave on R+ (a modulus of continuity). The set Sm1,δ (ω,N) is the collection
of such σ.

The main result of this paper has been proved in the case of localized Besov
space (Bs

p,q (Rn))`r by Moussai [2] and in the case of generalized Triebel–

Lizorkin space F
vµ
p,q (Rn) by Djeriou-Moussai [3].

For brevity, throughout this paper some parameters are fixed in the follow-
ing way, a > 0, τ ≥ 0, m ≥ 0, N ∈ N, 1 < p <∞, 1 < q ≤ ∞ and 0 ≤
δ < 1, except if they are mentioned in another form. Therefore, we will
prove that the following condition of Dini’s type:

(4)
( ∞∑

j=1

(
2−(1−δ+s)jN ω(2−(1−δ)j)

)q)1/q
< +∞

is sufficient and optimal for (Bs,τ
p,q )`r– continuity. Then our contribution is

the following results

Theorem 1.1. Let s > N . Suppose (4). Then every ps.d.o σ (x,D) of

symbol σ ∈ Sm1,δ (ω,N) is a bounded from (Bs+m,τ
p,q ( Rn))`r to (Bs,τ

p,q (Rn))`r .

Theorem 1.2. Suppose

(5)
( ∞∑

j=1

(
2−(1−δ+s)jN ω(2−(1−δ)j)

)q)1/q
= +∞

Then there exist a ps.d.o σ (x,D) of symbol σ ∈ Sm1,δ (ω,N) and a function

h ∈ (Bs+m,τ
p,q (Rn))`r such that σ (x,D)h /∈ (Bs,τ

p,q (Rn))`r .
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EXISTENCE OF PERIODIC SOLUTIONS FOR A

SINGLE-SPECIES POPULATION MODEL WITH

ITERATIVE TERMS

RABAH KHEMIS1 AND AHLÈME BOUAKKAZ2

Abstract. The key object of this work lies in establishing some criteria
that guarantee the existence of positive periodic solutions for a single-
species population model with iterative terms. We use the Green’s
method and the Krasnoselskii’s fixed point theorem for a sum of two
mappings. The obtained findings are new and complement some known
studies.
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noselskii’s fixed point theorem.

1. Pinpointing the problem

In this paper, we consider the following single-species population model
with iterative terms:

d

dt
x(t) = −b1 (t)x(t) + b2 (t)x[2](t) +

d

dt
f
(
t, x(t), x[2](t)

)
,

where a, b : R −→ R∗
+, are periodic continuous functions and f : R3 −→ R

is a periodic continuous function. This model can describe the growth of a
single species population where the state variable x (t) represents the total
number of individuals present at time t, b1 (t) is the death rate, b2 (t) is the

birth rate and the second iterate x[2](t) = (x ◦ x) (t) emerges from a time
and state dependent delay τ (t, x(t)) differing from one population to another
(gestation period, the maturation period, developmental cycle, etc.).
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ELASTIC MEMBRANE EQUATION WITH DYNAMIC
BOUNDARY CONDITIONS AND INFINITE MEMORY

MERAH AHLEM1 AND MESLOUB FATIHA2

Abstract. This work is concerned with the following viscoelastic wave equa-
tion with dynamic boundary conditions,source term and a nonlinear weak
damping localized on a part of the boundary and past history:

utt(t)−
(
a+ b ‖∇u‖2 + σ (∇u,∇ut)

)
∆u(t)−

∫ ∞

0
g(s)∆u(t− s)ds = 0,

together with boundary conditions

u(t) = 0, on Γ0 × R+,

utt(t) = −∂u(t)

∂ν
− ∂ut(t)

∂ν
+

∫ ∞

0
g(s)

∂u

∂ν
(t− s)ds− h(ut)− f(u), on Γ1 × R+

and initial conditions

u(x,−t) = u0(x), ut(x, 0) = u1(x), x ∈ Ω

where Ω ⊆ Rn (n ≥ 1) is a regular and bounded domain. ∂Ω = Γ0 ∪
Γ1,mes (Γ0) > 0, Γ0∩Γ1 = φ, and ∂

∂ν
is the unit outer normal derivative.Under

some appropriate assumptions on the relaxation function.the general decay for
the energy have been established using the perturbed Lyapunov functionals
and some properties of convex functions.
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EXISTENCE OF WEAK SOLUTION FOR FRACTIONAL

DIFFUSION-CONVECTION-REACTION SYSTEM

SARA DOB, MESSAOUD MAOUNI, AND HAKIM LAKHAL

Abstract. Fractional differential equations involve derivatives of frac-
tional order are important mathematical models of some practical prob-
lems in many fields such as image denoising, chemistry physics, heat
conduction and many other branches of science. In consequence, the
subject of fractional differential equations is gaining much importance
and attention. In this work we study the existence of weak solutions
for nonlinear fractional system with Direchlet boundary conditions. We
use a topological method which is based on the Leray-Schauder degree
to obtain the result of the existence of solutions.

2010 Mathematics Subject Classification. 35J60, 35D30.

Keywords and phrases. Nonlinear elliptic equations, fractional di-
vergence, weak solution.

1. Define the problem

Many methods have been proposed to deal with nonlinear fractional sys-
tems: fixed point method, semigroups method, sub-supersolution method,
Brouwer degee and Leray-Schauder degree, etc. The last method is an im-
portant topological tool introduced by Leray and Schauder in the study of
nonlinear partial differential equations in the early 1930s. The nontriviality
of the degree ensures the existence of a fixed point of the compact mapping
in the domain. It combines the properties of homotopy invariance and ad-
ditivity, which make the topological tool more convenient in application.

This work is devoted to the study of the existence of solutions to nonlocal
equations involving the fractional divergence, we give an application of the
Leray-Schauder degree theorem to prove the existence of a weak solution to
the following diffusion-convection-reaction system

(P)





(u, v) ∈ U∫
a1(x, u(x))∇su(x).∇sϕ(x)dx +

∫
ΩG1(x)g1(u(x)).∇sϕ(x)dx

=
∫

Ω f1(x, u(x)).∇sϕ(x)dx,

∫
a2(x, v(x))∇sv(x).∇sφ(x)dx +

∫
ΩG2(x)g2(v(x)).∇sφ(x)dx

=
∫

Ω f2(x, v(x)).∇sφ(x)dx,
for all (ϕ, φ) ∈ U

1
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which is the weak formulation of the following system:

(PV)





−divs(a1(x, u(x))∇su(x)))− divs(G1(x)g1(u)) = f1(x, u(x)) in Ω,

−divs(a2(x, v(x))∇sv(x))− divs(G2(x)g2(v)) = f2(x, v(x)) in Ω,

u = v = 0 on Rn \ Ω.

We place ourselves under the following assumptions:

(HP)





(i) Ω is a bounded open of Rn, n ≥ 1 and s ∈]0, 1[,
(ii) ai are Carathodory functions ,
(iii) ∃αi, βi ∈ R;αi ≤ ai(x, z) ≤ βi ∀z ∈ R a.e.x ∈ Ω,
(iv) Gi ∈ C1(Ω̄,Rn), divsGi = 0,
(v) gi ∈ C(R,R) and there are Ci ≥ 0 such as |Ci(z)| ≤ |z| ∀z ∈ R,
(vi) fi are Carathodory functions , and ∃Li ≥ 0 and di ∈ L2(Ω);

|fi(x, z)| ≤ di(x) + Li(z),

(vii) lim
z→±∞

fi(x,z)
z = 0,

for all i = 1, 2.

The main result of this work is

Theorem 1.1. Under hypothesis (HP), system (P) has a solution (u, v) ∈
U .

2. Proof of the main result

In this section, we study the existence of a weak solution for the nonlinear
fractional system with Dirichlet boundary conditions. We use the Leray-
Schauder degree to solve a diffusion-convection-reaction system.
This method requires a priori estimates, i.e. estimates on (u, v), without
knowing its existence.
we will define a homotopy H and we will verify the three condition of the
Leray-Schauder degree to arrive at existence result.
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[4] Pavel Drábek, Jaroslav Milota, Methods of Nonlinear Analysis ”Aplications to Differ-
ential Equations”, Basel-Boston-Berlin, (2007).

[5] Guy Gilboa and Stanley Osher, Nonlocal operators with applications to image pro-
cessing , Multiscale Model. Simul, Vol. 7, No. 3, 1005-1028, (2008).

[6] R. Hilfer(Ed), Application of fractional calculus in physics, World scientific publishing
Co. Singapore, (2000).

[7] Katzav. Eytan and Adda-Bedia. Mokhtar, The Spectrum of the Fractional Laplacian
and First Passage Time Statistics, EPL (Europhysics Letters), Vol. 83, No. 3, (2008).
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2), Université Aix Marseille, (2018).

61



EXISTENCE RESULT 3

[9] Hong Qiu and Mingqi Xiang, Existence of solutions for fractional p-Laplacian problems
via Leray-Schauder’s nonlinear alternative, Boundary Value Problems, (2016).

[10] Alexander Quaas and Aliang Xia, Existence results of positive solutions for nonlinear
cooperative elliptic systems involving fractional Laplacian, Communications in Con-
temporary Mathematics, Vol. 20, No. 3, (2018).

[11] Giampiero Palatucci, Ovidiu Savin and Enrico Valdinoci, Local and global minimizers
for a variational energy involving a fractional norm, Annali di matematica pura ed
applicata, Vol.192, No. 4, (2013).

[12] Xavier Ros-Oton and Joaquim Serra, The Pohozaev identity for the fractional Lapla-
cian, Arch.Ration, Mech. Anal,Vol. 213, No. 2, 587-628, (2014).
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EXISTENCE RESULTS FOR A SEMILINEAR SYSTEM OF

DISCRETE EQUATIONS

JOHNNY HENDERSON, ABDELGHANI OUAHAB,
AND MOHAMMED ASSEDDIK SLIMANI

Abstract. In this work, we establish several results about the existence
and uniqueness of solutions for some classes of semilinear systems of
difference equations with initial and boundary conditions. The approach
is based on a fixed point theory in vector-valued Banach spaces. Also,
we give an abstract formulation to Sadovskii’s fixed point theorem in
vector-valued Banach space.

2010 Mathematics Subject Classification. 34K45, 34A60
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metric space, condensing operator.

1. the problem

In this we consider the semilinear discrete system of the form:

(1)





x(t) = A(t)x(t) + f1(t, x(t), y(t)), k ∈ N(a, b),
y(t) = A(t)y(t) + f2(t, x(t), y(t)), k ∈ N(a, b),
x(a) = x0,
y(a) = y0,

where N(a, b) = {a, a + 1, . . . , b + 1}, f1, f2 : N(a, b) × X → X are given
functions and with a variable linear operator A(t) in a Banach space X.

Later, we study the following impulsive boundary-value problems:

(2)





x(t) = A(t)x(t) + f1(t, x(t), y(t)), k ∈ N(0, b),
y(t) = A(t)y(t) + f2(t, x(t), y(t)), k ∈ N(0, b),
L1(x(0)) = l1 ∈ X,
L2(y(0)) = l2 ∈ X,

wher L1, L2 : C(N(0, b), X)→ X are two bounded linear operator.

This paper is organized as follows. In Section ??, we introduce all the
background material needed such as generalized metric spaces and some
fixed point theorems. In Section ??, by using the measure of noncompact-
ness, we prove some Sadovskii fixed point theorems. The existence and
uniqueness of solutions to the problems (1) and (2) are studied in Sections
?? and ??, respectively.
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Ergodicity in Stepanov-Orlicz spaces
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Abstract : The aim of this work is to introduce new classes of functions called Stepanov-
Orlicz ergodic functions, which generalize in a natural way the classical Stepanov ergodicity
introduced by Diagana. Comparative study of these new functions is investigated. Examples
and counterexamples are presented.

Key words : Ergodicity, Stepanov-Orlicz spaces, Luxemburg norm ergodicity, Modular
ergodicity, Stepanov-Orlicz ergodicity, Lebesgue space with variable exponents

Classification MSC2010 : 46E30, 47A30

In the early nineties, Zhang [9] introduced a significant generalization of almost periodic
functions, the so called pseudo almost periodic functions by disturbing the almost periodic
function by an ergodic term. Namely, a bounded continuous complex-valued function f is said
to be ergodic if it satisfies

lim
r→∞

1

2r

∫ r

−r
|f(t)| dµ(t) = 0, (1)

where µ denotes the Lebesgue measure on R. Under the boundedness condition which is of
metric nature, Blot et al. [1] gave an elegant characterization of (1) via the following topological
property: For any ε > 0

lim
r→+∞

1

2r
µ ({t ∈ [−r, r] , |f(t)| ≥ ε}) = 0 (2)

in a general setting, when µ is any Borel measure on R, satisfying µ(R) = +∞ and µ([a, b]) <
+∞, for all a, b ∈ R, (a ≤ b), and for vector-valued functions f . Zhang’s ergodicty has undergone
various important generalizations, such as weighted pseudo almost periodicity and µ-pseudo
almost periodicity introduced by Blot et al. [1, 2] for which the other previous definitions
become just a particular cases. In [4], Diagana and Zitane introduce and study a new class of
weighted Stepanov-like pseudo-almost periodic functions with variable exponents, which include
Stepanov pseudo almost periodicity [3] as special case.
These notions of pseudo almost periodicity and their generalizations have been successfully
researched in abstract differential equations, evolution equations, and integro-differential equa-
tions because of there theoretical applications in control theory, mathematical biology, etc. We
refer the readers to [1, 5, 6, 7] and the references therein.
The direct impetus of this work comes from Diagana and Zitane’s paper [4] where a new notion
called Stepanov-like pseudo-almost periodic functions in Lebesgue spaces with variable exponents
Lp(.) is explored. The authors make extensive use of the Lebesgue spaces with variable exponents
Lp(.) to investigate some fundamental properties of these functions. The Lp(.) spaces have the
advantage that they are generated by a particular Musielak-Orlicz function ϕ (t, x) = |x|p(t)

satisfying the ∆2-condition.
As can be seen in (1) and (2), the notion of ergodicity is based on a topological property and on
a metric property (boundedness). Diagana and Zitane [4] extend Zhang’s ergodicity definition
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to Lebesgue spaces with variable exponents Lp(.) context by replacing the absolute value in (1)
by the Luxemburg norm, and boundedness property by the one in Luxemburg norm sense. This
motivated us to consider the case when Lp(.) space is equipped with the topology induced by the
modular convergence. It turns out that replacing the absolute value by the Luxemburg norm or
by its associated modular gives rise to two identical concepts.
Things become even more complicated if one takes the convergence in a general Orlicz spaces.
This allows us to see that ergodicity in Stepanov-Orlicz sense can be forks into many different
notions when applied to Orlicz spaces: Luxemburg norm ergodicity, modular ergodicity and
strongly modular ergodicity in Stepanov Orlicz sense.
Our main objective is to study the hierarchy of those various notions. A comparative study,
examples and counterexamples on the new introduced spaces will be investigated.
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ESTIMATES FOR SEMI LINEAR WAVE MODELS WITH

TWO DAMPING TERMS.

MOURAD KAINANE MEZADEK

Abstract. In this work we study the global (in time) existence of small
data solutions to the Cauchy problem for the semilinear wave equation
with friction, visco-elastic damping and a power nonlinearity. We are
interested in the connection between regularity assumptions for the data
and the admissible range of exponents p in the power nonlinearity |ut|p.

2010 Mathematics Subject Classification. [2010] 35L05 35L71

Keywords and phrases. global in time existence, small data solutions,
wave equation, visco-elastic damping, frictional damping, power non-
linearity, higher regularity of data, fractional chain rule
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1. Define the problem

In this work we are interested to study the following Cauchy problem for
the semilinear wave equation with two types of damping terms, friction and
visco-elastic damping as well, and with power nonlinearity:

(1)
utt −∆u+ ut −∆ut = |ut|p for (t, x) ∈ (0,∞)× Rn,
u(0, x) = ϕ(x), ut(0, x) = ψ(x) for x ∈ Rn,

where the data ϕ and ψ are given Cauchy data.
Under certain assumptions for the data and the dimension n. Our main
goals are to study the influence of regularity parameters s1, s2 ∈ R+ and
additional regularity parameter m ∈ [1, 2) for the data (ϕ,ψ), that is,

(ϕ,ψ) ∈ (Hs1 ∩ Lm)× (Hs2 ∩ Lm)

on the admissible range of exponents p which allow to prove the global (in
time) existence of small data Sobolev solutions or energy solutions with
suitable regularity.
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Abstract: We use the modi�ed version of contraction mapping principle
to obtain the existence and uniqueness of solutions for nonlinear Caputo-
Hadamard fractional delay di¤erential equations. We also use the method of
successive approximations to show the stability of the equations.
Keywords: Fractional delay di¤erential equations; Caputo-Hadamard

fractional derivatives; �xed point theorems; existence; uniqueness; successive
approximations; Ulam-Hyers stability; E�-Ulam-Hyers stability.

1 Introduction

Fractional di¤erential equations with and without delay arise from a vari-
ety of applications including various elds of science and engineering such as
applied sciences, physics, chemistry, biology, medicine, etc. In particular,
problems concerning qualitative analysis of linear and nonlinear fractional
di¤erential equations with and without delay have received the attention of
many authors.
In this work, we concentrate on the existence and uniqueness of solutions

and stability results for the nonlinear delay fractional di¤erential equation

D�
1x (t) = f (t; xt) ; t 2 [1; b] ; b > 1; (1)

x (t) =  (t) ; t 2 [1� r; 1] ; (2)

where f : [1; b] � C ([1� r; 1] ;Rn) ! Rn is a nonlinear continuous func-
tion, and D�

1 denotes the Caputo-Hadamard derivative of order m�1 < � �
m 2 N:

1
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Let Rnis an n-dimensional linear vector space over the reals with the norm

kxk =
 

nX
k=1

x2k

! 1
2

; x = (x1; x2; :::; xn) 2 Rn:

Let 0 � r < 1 be given real number, C = C ([1� r; 1] ; Rn), b > 1 the
Banach space of continuous functions from [1� r; 1] into Rn with the norme

k�kC = sup
1�r���1

k� (�)k :

Let us denote by B = Cm ([1� r; b] , Rn), b > 1 the Banach space of
all continuous functions from [1� r; b] into Rn having mth order derivatives
endowed with supremum norm k�kB. For any x 2 B and any t 2 [1; b], we
denote by xt the element of C de�ned by xt (�) = x (t+ �), � 2 [1� r; 1] :
To show the existence and uniqueness of solutions, we transform (1)-(2)

into an integral equation and then use the modi�ed version of contraction
principle. Further, by the successive approximation method, we obtain Ulam-
Hyers, Ulam-Hyers-Rassias, and E -Ulam-Hyers stability results of (1).
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EXISTENCE DE SOLUTION POUR UN PROBLÈME DE

FLUIDES NON NEWTONIEN

EL HACÈNE OUAZAR

Abstract. Dans ce travail nous étudions l’existence d’une solution
faible d’un système non linéaire regissant le mouvement d’un fluide non
Newtonien. l’ordre de derivation la plus grande (trois) se trouve dans le
terme non linéaire et le terme linéaire regularisant ∆u est d’ordre (2).
Nous cherchons la solution dans W 2,p, p > n
La clé de la démonstration de l’existence pour ce système est dans la
décomposition du problème, en vu d’appliquer la méthode de point fixe
sur un compacte

2010 Mathematics Subject Classification. 76D03, 46E35, 35A15.è

Keywords and phrases. Aqueous solution, incompressible fluids,
Sobolev spaces, specials basis, slip boundary conditions, Stationary
problem, compact operator

1. Define the problem

Notre but dans ce travail est de montrer l’existence d’une solution du
systme

(E)

{
−ν∆u + (u·∇)(u−α∆u) + ∇π = f , in Ω

divu = 0, in Ω

Ce systéme régi le mouvement d’une solution aqueuse d’un fluide non new-
tonien incompressible dont la loi de comportement

T = −pI + σ, σ = 2νD + 2α
dD

dt

Dans amrouche-ouazar [1], Il est démontré l’existence d’une solution appar-
tenant à l’espace H2(Ω) mais on ne peut pas déduire la régularité W 2,p par
le procédé utilisé sur le système de Navier-Stokes du fait que la plus grande
dérivée se trouve dans le terme non linéaire,comme signalée plus haut. En
s’insprant dr la méthode de décomposition utiliée Dans [2] pour le systéme
régissant l’écoulement des fluides appelés fluides de grade 2:

(E)

{
−ν∆u + rot(u−α∆u) × u + ∇π = f , in Ω

divu = 0, in Ω

Dans le quel, Le terme rot(u−α∆u) × u et la propriété fonctionnelle
rot(∇ψ) = 0, ∀ψ ∈ H1(Ω), sont bien exploitée dans ce problème pour
surmonter l’incovénient de l’existence du terme de pression ∇π,dans la de-
composition du point fixe, , ce qui n’est pas le cas pour notre principale
équation. Dans ce travail nous avons utilisé cette idée de décomposition,
mais après avoir pu trouver une formulation point fixe adéquate. En plus,

1
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avec les résultats de Novotny [3] , on a étudies ce problèmes avec les condi-
tions au bord de glissement(non d’adhérence au bord) comme c’est fait dans
[2]
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EXISTENCE OF A SOLUTION FOR A CLASS OF

HIGHER-ORDER BOUNDARY VALUE PROBLEM

SALAH BENHIOUNA AND AZZEDDINE BELLOUR

Abstract. In this paper, we first establish a generalization of Arzelà-
Ascoli theorem in Banach spaces, and then use Schauder’s fixed point
theorem to prove the existence of a solution for the boundary value
problem of higher order. Our results are obtained under rather general
assumptions.
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1. Define the problem

In this paper, we consider the following higher-order boundary value prob-
lems:

(1)





u(n) + f(t, u, u′, ..., u(n−2)) = 0, n ≥ 2, t ∈ I = [0, 1],

u(i)(0) = 0, 0 ≤ i ≤ n− 3,

αu(n−2)(0)− βu(n−1)(0) = 0,

γu(n−2)(1) + δu(n−1)(1) = 0.

where n is a given positive integer, α, γ > 0 and β, δ ≥ 0.
Our main task in this paper consists of giving a generalization of Ascoli-
Arzela theorem in the space Cn(X,E) (the space of functions from a compact
subset of R into a Banach space E with continuous nth derivative) in order
to prove the compactness criteria and to use Schauder fixed point theorem
in the space Cn to prove the existences of a solution for the higher-order
boundary value problems (1).
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EXISTENCE OF SOLUTION FOR ELLIPTIC PROBLEM

WITH SINGULAR NONLINEARITIES

N. ELHARRAR, J. IGBIDA, AND H. TALIBI

Abstract. In the present paper, we prove the existence and unique-
ness of weak solutions to a class of p(.)-Laplacian problem with Sin-
gular Nonlinearities, the main tool used here is using a regularization
and Schauders fixed point method with the theory of variables Sobolev
spaces.

2010 Mathematics Subject Classification. 35J92; 35J60; 35D30;
35A02.

Keywords and phrases. p(·)-laplacian, quasilinear elliptic problem,
nonlinear singular terms, existence, weak solution.

1. Define the problem

We consider the following p(·)-Laplacian problem with nonlinear singular
terms

−∆p(x)u =
f(x)

uα
, in Ω,

where α ≥ 1 and p(·) is a continuous function defined on Ω̄ with Ω is a
bounded regular domain in RN , N ≥ p(x) > 1. f is assumed to be a non
negative function belonging to a suitable Lebesgue space Lm(Ω).
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EXISTENCE OF SOLUTIONS FOR FRACTIONAL

INTEGRAL BOUNDARY VALUE PROBLEMS OF

FRACTIONAL DIFFERENTIAL EQUATION ON INFINITE

INTERVAL

ABDELLATIF GHENDIR AOUN

Abstract. In this subject, we are concerned with the existence of so-
lutions to fractional differential equation subject to Riemann-Liouville
fractional integral boundary conditions. By means of a recent fixed
point theorem, sufficient conditions are obtained that guarantee the ex-
istence of at least one solution. An example of application illustrate the
applicability of the theoretical result.

2010 Mathematics Subject Classification. xxxx, xxxx, xxxx.

Keywords and phrases. Boundary value problem, fractional differ-
ential equation, infinite interval, fixed point theorem.

1. Define the problem

In this subject, we will investigate the boundary value problem
{
Dα

0+u(t) + f(t, u(t), Dα−1
0+

u(t)) = 0, t ∈ (0,+∞),

u(0) = 0, lim
t→+∞

Dα−1
0+

u(t) = βIα−1
0+

u(η),(1)

where 1 < α 6 2, η > 0 and β > 0 satisfies 0 < βη2α−2 < Γ(2α − 1). Dα
0+

refers to the standard Riemann-Liouville fractional derivative and Iα0+ is the
standard Riemann-Liouville fractional integral.

In the last years, much of progress has been made in the study of boundary
value problems involving differential equations.

For instance, A. Guezane-Lakoud, R. Khaldi [2] have studied the follow-
ing boundary value problem with fractional integral boundary conditions in
bounded interval{

cDq
0+
x(t) + f(t, x(t),cDp

0+
x(t)) = 0, 0 < t < 1, 1 < q 6 2, 0 < p < 1

x(0) = 0, x′(1) = αIp
0+
x(1),

where cDq denotes the Caputo fractional derivative.
In [3], C. Shen, H. Zhou, and L. Yang have established existence of positive

solutions for the boundary value problem
{
Dα

0+u(t) + f(t, u(t), Dα−1
0+

u(t)) = 0, t ∈ (0,+∞),

u(0) = 0, u′(0) = 0, Dα−1
0+

u(+∞) =
∑m−2

i=1 βiu(ξi),

where 2 < α 6 3. Using the Schauder fixed point theorem, they have showed
the existence of one solution under suitable growth conditions imposed on
the nonlinear term.

1

76



2 ABDELLATIF GHENDIR AOUN

X. Su and S. Zhang [4] discussed the existence of unbounded solutions
and used Schauder’s fixed point theorem to prove existence of solutions for
the boundary value problem:

{
Dα

0+u(t) + f(t, u(t), Dα−1
0+

u(t)) = 0, t ∈ (0,+∞),

u(0) = 0, u′(0) = 0, Dα−1
0+

u(∞) = u∞, u∞ ∈ R,
where 1 < α 6 2.

C. Yu, J. Wang, and Y. Guo [5] have considered the solvability of the
following integral boundary value problem of fractional differential equation:{

Dα
0+u(t) + f(t, u(t), Dα−1

0+
u(t)) = 0, t ∈ (0,+∞),

u(0) = 0, Dα−1
0+

u(∞) =
∫ +∞
η g(t)u(t)dt,

where 1 < α 6 2, f ∈ C([0,+∞) × R × R,R), η > 0, g ∈ L1[0,+∞) and∫ +∞
η g(t)u(t)dt < Γ(α).

The work presented in this subject is a continuation of previous works and
is concerned with a boundary value problem of fractional order set on the
half-axis. It is mainly motivated by papers [2], [3], [4], [5]. To overcome the
difficulty related to the compactness of the fixed point operator, a special
Banach space is introduced. Our results allow the integral condition to
depend on the fractional integral Iα−1

0+
u which leads to additional difficulties.
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Abstract: 

This paper is dedicated to investigating the following elliptic 

equation with Kirchho type involving the p-Laplacian operator. 

Using the variational methods and critical points theory, we obtain 

the existence of non-trivial solution. 
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EXISTENCE RESULTS FOR ELLIPTIC EQUATIONS
INVOLVING TWO CRITICAL SINGULAR
NONLINEARITIES AT THE SAME POLE

ATIKA MATALLAH AND SAFIA BENMANSOUR

Abstract. In this work, we use variational methods to prove the exis-
tence of positive solutions for an elliptic equation with two critical Hardy
Sobolev exponents at the same pole and a certain nonlinear perturba-
tion. Some parameters play a crucial role in our work.

2010 Mathematics Subject Classification. 35J20, 35J50, 35B33

Keywords and phrases.Variational methods, Critical Hardy-Sobolev
exponents, Palais-Smale condition, Concentration compactness princi-
ple, Multiple critical nonlinearities.

1. Define the problem

In this work, we are concerned with the existence of nontrivial solutions
to the following elliptic problem:

(P)�;�;�;�

8<: ��u� �

jxj2
u =

1

jxj� juj
2�(�)�2 u+

1

jxj�
juj2

�(�)�2 u+ � jujq�2 u in 


u = 0 on @ 
;

where 
 is an open smooth bounded domain of RN ; N � 3; 0 2 
;
0 � �; � < 2; � > 0; 0 � � < � :=

�
N�2
2

�2
; which is the best Hardy con-

stant; 2� (s) = 2(N�s)
N�2 ; for 0 � s < 2 is the critical Hardy-Sobolev exponent

and 2 � q < 2� = 2� (0) :
The study of this type of problems is motivated by its various applica-

tions, for example: in quantum mechanics, chemistry, physics and di¤er-
ential geometry, etc. The mathematical interest lies in the fact that these
problems are double critical due to the presence of di¤erent Hardy Sobolev
exponents de�ned at the same pole of nonlinearities.
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EXISTENCE RESULTS FOR HIGHER ORDER

FRACTIONAL DIFFERENTIAL EQUATIONS WITH

INTEGRAL BOUNDARY CONDITIONS

ADEL LACHOURI AND ABDELOUAHEB ARDJOUNI

Abstract. In this work, we obtain some novel existence and unique-
ness results for higher order fractional differential equations subject to
integral boundary conditions. Our results are obtained via the fixed
point theorems. Example is given which illustrate the effectiveness of
the theoretical results.

2010 Mathematics Subject Classification. 34A08, 34A12.

Keywords and phrases. Fractional differential equations, existence,
uniqueness, integral boundary conditions, fixed point.

1. Define the problem

Motivated by the mentioned works in [1, 2, 3], in this work, we prove
the existence and uniqueness of mild solutions for higher order fractional
differential equations with integral boundary conditions

(1)





CDαx (t) = f (t, x (t)) , t ∈ (0, T ) ,

x (0) = x′ (0) = x′′ (0) = ... = x(n−2) (0) = 0,

x (T ) = λ
∫ T
0 x (s) ds+ d,

where CDα is the Caputo fractional derivative of order α, n − 1 < α ≤ n,
n ≥ 2, n ∈ N, λ, d ∈ R and f : [0, T ] × R → R is a given continuous func-
tion. To obtain our results, We convert the problem (1) into an equivalent
integral equation. Then we construct appropriate mappings and employ the
Schauder fixed point theorem to show the existence of a mild solution. We
also use the Banach fixed point theorem to show the existence of a unique
mild solution.
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Exponential decay for a nonlinear axially moving viscoelastic string
under a Boundary Disturbance

Tikialine Belgacem,TEDJANI HADJ AMMAR1, Abdelkarim Kel-
leche 2

1Operators theory and PDE Laboratory, Department of Mathematics, Faculty
of Exact Sciences, University of El-Oued, P.O.Box789, El Oued39000.

2Faculté des Sciences et de la Technologie, Université Djilali Bounâama, Route
Theniet El Had, Soufay 44225 Khemis Miliana, Algeria.,

Abstract

The stabilization of a nonlinear axially moving viscoelastic string is the
topic of this paper. Next, we are showing Under reasonable conditions on the
initial results, by using the prospective well process, certain solutions exist
globally. We then demonstrate that the damping provided by the viscoelastic
term is sufficient to ensure an exponential decay.
Key words: moving string,Arbitrary decay ,multiplier method, Asymptotic
behavior, Stability. Stability.
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EXPONENTIAL STABILIZATION OF A

THERMOELASTICITY SYSTEM WITH WENTZELL

CONDITIONS

H. KASRI

Abstract. In this work, the uniform stabilization of thermoelasticity
system with static Wentzell type is considered, and the uniform energy
decay rate for the problem is established using multiplier method.

2010 Mathematics Subject Classification. 93C20, 93D15.

Keywords and phrases. Thermoelasticity, exponential stabilization,
Wentzell conditions, boundary feedbacks.

1. Define the problem

This paper is devoted to studying the exponential stabilization of the
solutions of the electromagneto-elastic system with Wentzell conditions by
linear boundary feedbacks. More precisely, let Ω be a bounded domain of
R3 with a boundary Γ = ∂Ω of class C3. The model is given by:





u′′ − divσ(u) + ξ∇θ = 0, in Q = Ω×]0,∞[,

θ′ −∆θ + βdivu′ = 0, in Q,

θ = 0, in Q,

(1)

Our notations in (1) are standard:u′ = ∂u
∂t , u′′ = ∂2u

∂t2
, u(x, t) ∈ R3 denote the

displacement vector at x = (x1, x2, x3) ∈ Ω and t is the time variable and θ =
θ(x, t) represent the temperature. σ(u) = (σij(u))3i,j=1 is the stress tensor

given by σ(u) = 2αε(u)+λdiv(u)I3, where λ and α are the Lamé coefficients,
I3 is the identity matrix of R3 and ε(u) = 1

2(∇u + (∇u)T ) = [εij(u)]3i,j=1

is a 3 × 3 symmetric matrix. From now on, a summation convention with
respect to repeated indexes will be use. Also, in system (1) the coupling
parameters ξ and β are supposed to be positive.

We complement system (1) with initial conditions

(2) u(., 0) = u0, u
′(., 0) = u1, θ(., 0) = θ0, in Ω,

and boundary conditions
{
σS(u)− divTσ0T (u) + auT + bu′ = 0, on Σ,
σν(u) + σ0T (u) : ∂mν + auν + bu′ = 0, on Σ,

(3)

where a = a(x) and b = b(x) be two nonnegative functions belongs to C1(Γ),
σ0T (u) : ∂mν = tr(σ0T (u) · ∂mν), with

(4) σ0T (u) = 2αε0T (u) +
2λα

λ+ 2α
tr(ε0T (u))I2,
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and “tr” means the trace of a matrix. As usual ν = ν(x) denotes the unit
normal vector at x ∈ Γ pointing the exterior of Ω.

Wentzell boundary conditions are characterized by the presence of tangen-
tial differential operators of the same order as the interior operator. These
boundary conditions are usually justified by asymptotic methods and ap-
pear in several fields of applications such as physics, in diffusion processes
[17], in mechanics [12], as well as in wave phenomena [4]. Such a system was
first investigated by Lemrabet [12] and subsequently by A. Heminna [4, 3, 5]
and Kasri [9, 10]. In [5] the author showed that the natural feedback is not
sufficient to guarantee the exponential decay of the energy (E(t)) in the case
of the wave equation with Wentzell conditions.

In [14], W. Lui considered the thermoelastic system with the following
boundary conditions

µ
∂u

∂ν
+ (λ+ µ)div(u)ν + a(x)m · νu+ (m · ν)u′ = 0

Under suitable geometric conditions imposed on the domain, he proved
results of stabilization and exact controllability for the model. Later on,
[15] treated the above problem in the case when the linear boundary feed-
back term (m · ν)u′ is replaced by the nonlinear velocity boundary damping
(m ·ν)g(u′), by using the multiplier techniques and suitable Lyapunov func-
tionals, they established both exponential and polynomial decay rates for
the energy. This work was later improved by [6], they considered the situa-
tion where the localized internal nonlinear velocity feedback acts effective in
the whole domain Ω and the nonlinear boundary velocity damping acts on
a part of Γ. Their proof is based on the multiplier method combined with
nonlinear integral inequalities to show that the energy of the system decays
to zero as t goes to infinity.

Quite recently, H. Kasri and A. Heminna [7](resp.[8]) considered a coupled
Maxwell/wave system (resp. electromagneto-elastic system) with Wentzell
conditions and proved that the energy of the system decays exponentially if
Ω is strictly star shaped with respect to the origin. Their method of proof
is based on the validity of some stability estimate which is obtained using
the multiplier method.

Therefore one may ask, Does (E(t)) the energy of the system (1) − (3)
tend to zero exponentially as time goes to infinity?

Our aim in this work is to investigate (1)− (3) and establish exponential
decay result, i.e., explicit energy decay rates.
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Fixed point theorems in the study of positive strict
set-contractions

Salima Mechrouk

Abstract

The author uses fixed point index properties and Inspired by the work in Ben-
mezai and Boucheneb (see Theorem 3.8 in [3]) to prove new fixed point theorems
for strict set-contraction defined on a Banach space and leaving invariant a cone.

Key words: Cones, fixed point theory, strict set-contractions, positive solution, general
minorant principle, boundary value problem.
2010 Mathematics Subject Classifications: 47H10, 47H11, 47H30.

1 Introduction

In the study non-linear operators in ordered Banach spaces having an invariant cone it
is often convenient to make use of minorants, majorants and the special concept of the
derivatives in order to establish the existence of non-zero fixed points. Krasnoselskii has
provided in [10] many interesting fixed point theorems stating that if such an operator is
approximatively linear at 0 and +∞, and the spectral radii of the linear approximations
are oppositely located with respect to 1, then it has a fixed point. Amann in [2] has
generalized these results for monotones operators which are strict set-contractions.

The main goal of this paper is to study strict-set contraction in ordered Banach spaces
having an invariant cone and to give sufficient conditions on minorants and majorants
which yield the existence of at least one non-zero fixed point ( see [4], [3], [1] and [5]).
We will assume that the mapping T has an asymptotically linear majorant h and has a
minorant g which is right differentiable at zero and existence of the fixed point is obtained
under additional conditions about the positive spectra of the derivatives. The proofs are
based on the fixed point index theory, developed in [12] (see also the monographs [7] and
[8]). In order to be more precise, let X be a Banach space, C be a cone in X, and let
T : C −→ C be a completely continuous mapping. Recently, Mechrouk have proved in
[11] that if T has a positive right differentiable at zero minorant h : K −→ K and an

asymptotically linear positive majorant g : P −→ P satisfying θ
g′(∞)
P < 1 < λ

h′(0)
P , then T

has at least one positive nontrivial fixed point, where the constants λ
h′(0)
P and θ

g′(∞)
P play

an important role in the statement of the obtained existence and nonexistence results and
sometimes they replace the positive spectral radius. Motivated by the above work, we
consider in this paper the case where the operator T is a strict set-contraction.

The paper is organized as follows. Section 2 gives some preliminaries. Section 3
is devoted to prove new fixed point theorems for positive maps having approximative
minorant and majorant at 0 and ∞ in specific classes of operators. Applications to the
existence of solutions to a third order boundary value problem with mixed boundary
conditions are presented in the last section.
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2 Abstract Background

We will use extensively in this work cones and the fixed point index theory, so let us recall
some facts related to these two tools. Let X be a real Banach space endowed with norm
‖ . ‖, and let L(X) = L(X,X) be the set of all linear continuous mapping from X into X.
A nonempty closed convex subset C of X is said to be a cone if (tC) ⊂ C for all t ≥ 0 and
C ∩ (−C) = {0X} . It is well known that a cone C induces a partial order in the Banach
space X. We write for all x, y ∈ X : x � y if y − x ∈ C, x ≺ y if y − x ∈ C, y 6= x and
x � y if y− x /∈ C. Notations �, � and � denote respectively the reverse situations. We
say that the cone C is normal with a constant nC > 0 if for all u, v in C, u � v implies
‖u‖ ≤ nC ‖v‖ .
Let C be a cone in X and let L : X → X.

Definition 2.1 The mapping L is said to be positive if L (C) ⊂ C. In this case, a non-
negative constant µ is said to be a positive eigenvalue of L if there exists u ∈ C r {0X}
such that Lu = µu.

Definition 2.2 Let A be a nonempty set and let B be an ordered set. A map g : A −→ B
is said to be a majorant of the map f : A −→ B if f(x) ≤ g(x) for all x ∈ X. Minorant
is defined by reversing the above inequality sign.

Definition 2.3 Let C be a cone in X and L : X → X a continuous map. L is said to be
a) positive, if L (C) ⊂ C,
b) strongly positive, if C has a nonempty interior (intC 6= ∅) and L (C r {0X}) ⊂ intC,
c) increasing, if for all u, v ∈ X, u � v implies Lu � Lv,
d) 1-homogeneous, if for all u ∈ X and t ∈ R, L (tu) = tL (u) .

Definition 2.4 Let L1, L2 : X → X be positive maps. We write L1 � L2 if for all
x ∈ C, L1x � L2x.

Definition 2.5 Let B(X) be the set of all bounded subsets of X and ψ : B(X) −→ R+

be a measure of non-compactness on X; that is ψ satisfies for A, B ∈ B(X)

1. ψ(A) = 0⇐⇒ A is relatively compact on X.

2. A ⊆ B imply ψ(A) ≤ ψ(B).

3. ψ(c̄oA) = ψ(A) = ψ(A).

4. ψ(A
⋃
B) = max {ψ(A), ψ(B)} .

5. for all t ∈ [0, 1], ψ(tA+ (1− t)B) = tψ(A) + (1− t)ψ(B)

6. if (An)n ⊂ B(X) is a decreasing sequence of closed nonempty sets with limψ(An) =
0, then ∩n≥1An is a nonempty compact set.
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Definition 2.6 A function f : Ω ⊂ X → X is said to be a strict-set contraction if it is
continuous, bounded, and there exists a constant k ∈ [0, 1) such that ψ(f(S)) ≤ kψ(S)
for all bounded sets S ⊂ Ω.

Proposition 2.7 (Darbo)
Let (X1, d1) and (X2, d2) be metric spaces and f : X1 −→ X2 a continuous map.
a) if f is a k-contraction, then f is a k-set contraction,
b) If f is compact on bounded sets, then f is a 0-set-contraction. Conversely, if X2 is
complete and f is a 0-set-contraction, then f is compact on bounded sets.

Definition 2.8 ([13]) A map g : C −→ X is said to be differentiable at x0 ∈ C along C
if there exists g′(x0) ∈ L(X) such that

lim
h∈C,h−→0

‖ g(x0 + h)− g(x0)− g′(x0)h ‖
‖ h ‖ = 0.

We say that g′(x0) is the derivative of g at x0 along C, is uniquely determined.
The map g is said to be asymptotically linear along C if there exists g′(∞) ∈ L(X)

such that

lim
x∈C,‖x‖−→+∞

‖ g(x)− g′(∞)x ‖
‖ x ‖ = 0.

Again, g′(∞) is uniquely determined and called the derivative at infinity along C.

Lemma 2.9 ([10]) The derivative g′(ν), (ν = +∞, or x0 ∈ C), with respect to a cone
of the positive operator g is a linear positive operator.

3 Fixed point index

We will make extensive use of fixed point index theory. For the sake of completeness, we
recall some basic facts related to this; see [6] and [9].

Let K be a nonempty closed subset of a Banach space X. Then K is called a retract of
X if there exists a continuous mapping r : X −→ K such that r(x) = x for all x ∈ K. Such
a mapping is called a retraction. From a theorem by Dugundji, every nonempty closed
convex subset of X is a retract of E. In particular, every cone in E is a retract of X. Let
K be a retract of X and U be a bounded open subset of K such that U ⊂ B(0, R), where
B(0, R) is the ball centered at 0 of radius R. For any completely continuous mapping
f : U −→ K with f(x) 6= x for all x ∈ ∂U, the integer given by

i (f, U,K) = deg
(
I − f ◦ r, B(0, R) ∩ r−1(U), 0

)
.

where deg is the Leray-Schauder degree, is well defined and is called the fixed point index.
The fixed point index satisfies:
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4 S. Mechrouk

• Normalisation: i (f, U,K) = 1 whenever f is constant on Ū .

• Additivity: For any pair of disjoint open subsets U1, U2 in U such that f has no
fixed point on Ū \ U1 ∪ U2, we have:

i (f, U,K) = i (f, U1, K) + i (f, U2, K) .

• Homotopy invariance: The index i (h(x, t), U,K) does not depend on the parameter
t, 0 ≤ t ≤ 1 where h : ∂U × [0, 1] −→ X is a compact mapping and h(x, t) 6= x for
every x ∈ ∂U and 0 ≤ t ≤ 1.

• Permanance: If Y is retract of X and f(Ū) ⊂ Y, then

i (f, U,K) = i (f, U ∩ Y, Y ) .

• Excision property. Let V ⊂ U an open subset such that f has no fixed point in
Ū \ V, then:

i (f, U,K) = i (f, V,K) .

• Existence property. If i (f, U,K) 6= 0, then f has a fixed point in U.

The previous results can be applied in a neat way to give a fixed point index for local
strict-set-contractions [12].
Let G be an open subset of a space X and assume f : G −→ X is a local strict-set-
contraction such that S = {x ∈ G, f(x) = x} is compact. Using Lemma 1 on [12], there
exists an open neighborhood V of S such that K∞(f, V ) is compact. By the results of
the previous section there is defined a generalized fixed point index

i(f,G,X) = i(f, V ∩X ∩K∞(f, V ), X ∩K∞(f, V )),

where

K∞(f, V ) = ∩n≥1Kn(f, V ),

Kn(f, V ) = co g(V ∩Kn−1(f, V )), n > 1,

K1(f, V ) = co f(V ).

denotes the closure of a set and c̄o is the convex closure of a set.
The fixed point index satisfies:

• The additive property. Let G be an open open subset of a space X and f : Ḡ −→ X
a local strict-set-contraction such that S = {x ∈ G, f(x) = x} is compact. Assume
that S ⊂ G1 ∪G2 where G1 and G2 are two disjoint open sets included in G. Then

i(f,G,X) = iX(f,G1, X) + i(f,G2, X).
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• The homotopy property. Let I = [0, 1] and let Ω be an open subset of X × I,
X ∈ F. Let F : Ω −→ X be a continuous map and assume that F is a local
strict-set-contraction in the following sense: given (x, t) ∈ Ω, there exists an open
neighborhood of (x, t) ∈ Ω, Nx,t, such that for any subset A of X,

γ (F (Nx,t ∩ (A× I))) ≤ kx,t γ (A) , kx,t < 1.

Assume that S = {(x, t) ∈ Ω : F (x, t) = x} is compact. Then iX(Ft,Ωt) is defined
for t ∈ I and

i(F0,Ω0, X) = i(F1,Ω1, X).

Detailed presentation of the differentiability with respect to a cone can be found in [10]
and [13].

Let us recall some lemmas providing fixed point index computations. Let C be a cone
in X. Let for R > 0, CR = C ∩ B (0X , R) where B (0X , R) is the open ball of radius R
centred at 0X , and let ∂CR be its boundary and consider a strict-set contraction mapping,
f : CR → C.

Lemma 3.1 ([7]) If fx 6= λx for all x ∈ ∂CR and λ ≥ 1 then i (f, CR, C) = 1.

Lemma 3.2 ([7]) If there exists e � 0X such that x 6= fx + te for all t ≥ 0 and all
u ∈ ∂CR then i (f, CR, C) = 0.

From the two Lemma above, we conclude the following Lemma.

Lemma 3.3 If fx � x for all x ∈ ∂CR then i (f, CR, C) = 1.

Lemma 3.4 If fx � x for all x ∈ ∂CR then i (f, CR, C) = 0.

A detailed presentation of the fixed point index theory for strict-set contraction map-
pings can be found in [12].

In all this section E is a real Banach space, K is a nontrivial cone in E and L(E)
denote the set of all linear continuous self mapping on E endowed with the norm, ‖L‖ =
sup
‖u‖=1

‖Lu‖ . Let C+(E) denote the subset of L(E) consisting of all strict set-contraction

positive operators. Hereafter � is the order induced by the cone K on E and we set,

LK(E) = {L ∈ L(E), L is increasing }

and

CK(E) = {L ∈ LK(E) : L is a strict-set contraction} .
Now, for L ∈ LK(E) we define the subset

ΘL
P = {θ ≥ 0 : there exists u ∈ P r {0E} such that Lu � θu} .
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6 S. Mechrouk

Remark 3.5 Note that

i) 0 ∈ ΘL
P and if θ ∈ ΘL

P , then [0, θ] ⊂ ΘL
P .

ii) ΛL
P ⊂ ΛL

K and ΘL
P ⊂ ΘL

K .

iii) If µ is positive eigenvalue of L, then µ ∈ ΘL
P ∩ [0, ‖ L ‖].

iv) If L−1 (0E) ∩K = {0E} and P ⊂ K then ΘL
P = ΘL

K .

In all this paper, we set for L ∈ LPK (E) ,

θLP = sup ΘL
P

The constant θLP replaces the spectral radius of L which in our case is not necessarily an
eigenvalue of L having an eigenvector in K. So, it is natural to ask what represents this
constant with respect to the operator L.
If L : E −→ E is a bounded linear operator, then we define, r(L), its spectral radius by

r(L) = lim
n−→+∞

‖ Ln ‖ 1
n .

Lemma 3.6 gives sufficient conditions for the existence of θLP .

Lemma 3.6 ([3]) Assume L ∈ LK(E). Then the subset ΘL
P is bounded from above by

r(L).

Lemma 3.7 ([3]) Assume that the cone K is solid, and let L ∈ CK(E) be strongly
positive and increasing. Then θLK is the unique positive eigenvalue of L.

4 Main results

Theorem 4.1 Suppose that T has a right differentiable at zero majorant g : K −→ K
such that g(0) = 0, g′(0) ∈ CK(E) satisfying r (g′(0)) < 1 and K is a normal cone. Then
T has at least one positive nontrivial fixed point.

Arguing as in the proof of Theorem 4.1, we obtain the following result.

Theorem 4.2 Suppose that T has an asymptotically linear majorant g : K −→ K such
that g′(∞) ∈ CK(E) satisfying r(g′(∞)) < 1 and K is normal. Then T has at least one
positive nontrivial fixed point.

Theorem 4.3 Suppose that the cone K is a normal cone and T has an asymptotically
linear majorant g : K −→ K such that g′(∞) ∈ CK(E). Suppose that T has a right
differentiable at zero minorant h : K −→ K such that h(0) = 0 and h′(0) ∈ CK(E)

satisfying r (g′(∞)) < 1 < θ
h′(0)
P . Then T has at least one positive nontrivial fixed point.
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4.1 Application to third order bvp

The aim of this section is to study existence of positive solutions for the following third
order boundary value problem




− u′′′(t) + c u′(t) = a(t) f(t, u(t)) 0 < t < 1

u(0) = u′(0) = u′(1) = 0,
(4.1)

where c is a positive constant.
Suppose that
(H1) a ∈ C([0, 1],R+) does not vanish identically on any subinterval of [0, 1].
(H2) f ∈ C[[0, 1]× R+,R+], f(t, 0) = 0, ∀t ∈ [0, 1] and for any l > 0, f(t, x) is uniformly
continuous and bounded on [0, 1]×(R+∩Sl) and there exists a constant Ll with 0 ≤ Ll <

c
2

such that
ψ(f(t, S)) ≤ Llψ(S), ∀t ∈ [0, 1], S ⊂ P ∩ Sl,

where Sl = {x ∈ R, | x |< l} and here ψ denotes the Kuratowski measure of non-compactness
on S.
We also consider the associated linear eigenvalue problem




− u′′′(t) + c u′(t) = µ a(t) u(t) 0 < t < 1

u(0) = u′(0) = u′(1) = 0,
(4.2)

The Green’s function associated with (4.1) given by:

G(t, s) =
1

c sinh(
√
c)





[
cosh(

√
c t)− 1

]
sinh(

√
c−√c s) t ≤ s,

sinh(
√
c)− sinh(

√
c−√c s) s ≤ t

− sinh(
√
c s) cosh(

√
c−√c t).

(4.3)

We may prove the following Lemma.

Lemma 4.4 The Green’s function G(t, s) possesses the following properties:

1 G(., s) and G(t, .) are continuous on [0, 1] and

G(t, s) ≤ 1

c
, ∀t, s ∈ [0, 1].

2 For s ∈ (0, 1) fixed we have

∂G(t, s)

∂t
> 0, ∀t ∈ (0, 1),

∂G(0, s)

∂t
= 0 and

∂G(1, s)

∂t
= 0.

Furthermore
∂G(t, 0)

∂t
=
∂G(t, 1)

∂t
= 0 for all [0, 1].
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8 S. Mechrouk

3 For all t, s ∈ [0, 1], we have

∂2G(t, s)

∂t2
> 0 if t ≤ s and

∂2G(t, s)

∂t2
< 0 if s ≤ t.

4 Let s ∈ [0, 1] fixed. We have

max
t∈[0, 1]

| ∂
2G

∂t2
(t, s) |= max

(
∂2G

∂t2
(0, s), −∂

2G

∂t2
(1, s)

)
.

In all this section, we let E be the Banach space of all continuous functions defined on
[0, 1] equipped with its sup-norm (for u ∈ E, ‖u‖ = sup{|u(t)| : t ∈ [0, 1]}) and K be the
normal cone of nonnegative functions in E.

Lemma 4.5 The linear eigenvalue problem (4.2) has a unique positive eigenvalue µ? > 0.

Let introduce the following notations

f 0 = lim sup
u→0

(
max
0≤t≤1

f(t, u)

u

)
f∞ = lim sup

u→∞

(
max
0≤t≤1

f(t, u)

u

)

Theorem 4.6 The problem (4.1) admits a positive solution whenever one of the following
conditions:

f∞ < µ? < f 0 (4.4)
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FUNDAMENTAL PROPERTIES RELATED TO CERTAIN

OPERATORS ON HILBERT SPACES

AISSA NASLI BAKIR

Abstract. The aim of the present talk is to generalize certain prop-
erties of parahyponormal operators showed by authors in [4] to a large
class of (M,k)-quasi-parahyponormal operators where we present their
matrix representation, their finite ascent and and their SVEP.

2010 Mathematics Subject Classification. 47A30, 47B47, 47B20.

Keywords and phrases. Parahyponormal operators, (M,k)-quasi-
parahyponormal operators, Ascent and descent of an operator, Single
Valued Extension Property.

1. Definition of the problem

In [4], is introduced a class of parahyponormal operators, i.e., operators
satisfying (AA?)2−2λA?A+λ2 ≥ 0 for all λ > 0, whereA is a bounded linear
operator on a complex separable Hilbert space, and are proved some related
results. In this talk, we give an extension of these properties to a large class
of (M,k)-quasi-parahyponormal operators. The matrix representation, the
ascent, the SVEP and other related results are shown.
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GENERAL DECAY OF SOLUTIONS IN

ONE-DIMENSIONAL POROUS-ELASTIC SYSTEM WITH

MEMORY AND DISTRIBUTED DELAY TERM WITH

SECOND SOUND

FARES YAZID, DJAMEL OUCHENANE, AND FATIMA SIHAM DJERADI

Abstract. We investigate a one-dimensional porous-elastic system with
the presence of both memory and distributed delay terms in the second
equation with second sound. Using the well known energy method com-
bined with Lyapunov functionals approach, we obtain a general decay
result.

2010 Mathematics Subject Classification. 35B40, 35L70, 93D15,
93D20.

Keywords and phrases. Porous system, General decay, Exponential
Decay, Memory term, Distributed delay term.

1. Define the problem

In this work, we are consider the following problem




ρutt − µuxx − bφx = 0,

Jφtt − δφxx + bux + ξφ+
∫ t
0 g(t− s)φxx(x, s)ds+ µ1φt

∫ τ2
τ1
|µ2(s)|φt(x, t− s)ds+ γθx = 0,

ρ3θt + κqx + γφtx = 0,
τ0qt + δq + κθx = 0.

Where (x, s, t) ∈ H, when H = (0, 1)× (τ1, τ2)× (0,∞)
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GLOBAL EXISTENCE AND UNIQUENESS OF THE WEAK

SOLUTION IN THIXOTROPIC MODEL

AMIRA RAHAI AND AMAR GUESMIA

Abstract. In this paper, we study global existence, uniqueness and
boundedness of the weak solution for the system (P ) which is formulated
by two subsystems (P1) and (P2), the first describes the thixotropic
problem and the second describes the diffusion degradation of c, using
Galerkin’s method, Lax-Milgran’s and maximum principle. Moreover
we show that the unique solution is positive.

2010 Mathematics Subject Classification. Primary 90C57, 90C59
Secondary 90C49.

Keywords and phrases. global solution, boundedness, positive solu-
tion.

1. Define the problem

Our model is defined as follows:

(P )





(P1)





ut + ∆u− λdiv
[
u ∇(c−u0)√

β+|∇(c−u0)|2

]
+ u = u0 (t, x) ∈ R+ × Ω

u = 0 ∂Ω
u (0, x) = u0 x ∈ Ω

(P2)

{
−∆c+ τc = 0 x ∈ Ω
c = g ∂Ω

Where u (t, x) is a function denotes the speed of fluid in the position
x ∈ Ω ⊂ R2 or R3, Ω is a bounded convex domain with smooth boundary

∂Ω ∈ H
3
2 (∂Ω), λ > 0 is the viscosity of the fluid, β > 0 is a parameter

constant, c denotes the concentration of chemical signal that stimulates the
fluid. The parameter τ is a time constant and it is expressed on the one
hand the movement of fluid and secondly the diffusion degradation of c.

To simplify the solution of the system (P ), a decomposition of (P ) into two
subsystem (P1) and (P2) are adopted. Galerkin’s method is very important
to help us to demonstrate the existence and uniqueness of a weak solution for
system (P1) . To prove the existence and uniqueness of a weak solution for
system (P2), we use Lax-Milgram’s theorem and maximum principle. How-
ever this theorem can not be applied directly because it is nonhomogenous
system. For this reason an adoptation of Trace theorem it used to simplify
the system(P2) . Therefore we have the existence and uniqueness of a weak
solution for system (P ). Moreover we show that the solution is positive.
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GENERALIZED WEAKLY SINGULAR INTEGRAL

INEQUALITIES WITH APPLICATIONS TO FRACTIONAL

DIFFERENTIAL EQUATIONS

SALAH BOULARES AND BOUCENNA DJALAL

Abstract. In this research work, we have established some new weakly
singular integral inequalities, our obtained inequalities generalize some
recent obtained inequalities in the literature. Also, involving a Caputo
type fractional derivative with respect to another function, we have ob-
tained some applications to fractional differential equations.

Keywords and phrases. integral inequalities, fractional differential
equations.
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GLOBAL EXISTENCE RESULTS FOR SECOND ORDER

NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATION

WITH STATE-DEPENDENT DELAY

MOUFFAK BENCHOHRA AND IMENE MEDJADJ

Abstract. Our aim in this work is to provide sufficient conditions for
the existence of global solutions of second order neutral functional dif-
ferential equation with state-dependent delay. We use the semigroup
theory and Schauder’s fixed-point theorem.

2010 Mathematics Subject Classification.34G20, 34K20, 34K30.

Keywords and phrases. Neutral functional differential equation of
second order, mild solution, infinite delay, state-dependent delay fixed
point, semigroup theory, cosine function.

1. Define the problem

we will consider the following problem

(1)
d

dt
[y′(t)− g(t, yρ(t,yt))] = Ay(t) + f(t, yρ(t,yt)), a.e. t ∈ J := [0,+∞)

(2) y(t) = φ(t), t ∈ (−∞, 0], y′(0) = ϕ,

where f, g : J × calB → E is given function, A : D(A) ⊂ E → E is the
infinitesimal generator of a strongly continuous cosine function of bounded
linear operators (C(t))t∈IR, on E, φ ∈ calB, ρ : J × calB → (−∞,+∞),
and (E, |.|) is a real Banach space. We denote by yt the element of calB
defined by yt(θ) = y(t + θ), θ ∈ (−∞, 0]. We assume that the histories yt
belongs to some abstract phases calB.
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GLOBAL UNIQUENESS RESULTS FOR FRACTIONAL

PARTIAL HYPERBOLIC DIFFERENTIAL EQUATIONS

WITH INFINITE STATE-DEPENDENT DELAY

MOUFFAK BENCHOHRA1 AND MOHAMED HELAL1,2

Abstract. In this paper we investigate the existence and uniqueness
of solutions of hyperbolic fractional order differential equations with
infinite state-dependent delay by using a nonlinear alternative of Leray-
Schauder due to Frigon and Granas for contraction maps in Fréchet
spaces.

2010 Mathematics Subject Classification. 26A33, 34K30, 34K37.

Keywords and phrases. Partial functional differential equation, frac-
tional order, infinite state-dependent delay.

1. Define the problem

In this work we present a global existence and uniqueness of solutions to
the fractional order initial value problem (IV P for short)

(1) (cDr
0u)(x, y) = f(x, y, u(ρ1(x,y,u(x,y)),ρ2(x,y,u(x,y)))), if (x, y) ∈ J,

(2) u(x, y) = φ(x, y), if (x, y) ∈ J̃ ′,

(3) u(x, 0) = ϕ(x), u(0, y) = ψ(y), (x, y) ∈ J,
where ϕ,ψ : [0,∞)→ Rn, are given absolutely continuous functions, ϕ(0) =

ψ(0), J̃ ′ =: (−∞,+∞) × (−∞,+∞)\[0,∞) × [0,∞), f : J × B→ R, ρ1 :

J × B→ R, ρ2 : J × B→ R are given functions, φ : J̃ ′ → Rn is a given
continuous function with φ(t, 0) = ϕ(t), φ(0, x) = ψ(x) for each (t, x) ∈ J
and B is called a phase space.
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GLOBAL EXISTENCE OF SOLUTION OF NONLINEAR

WAVE EQUATION WITH GENERAL SOURCE AND

DAMPING TERMS.

BOULMERKA IMANE1 AND HAMCHI ILHEM2

Abstract. In this work, we consider the nonlinear wave equation with
general source and damping terms. Using the idea of Salim Messaoudi in
(Blow up and global existence in a nonlinear viscoelastic wave equation.
Math. Nachr, 260, 58-66, 2003), we prove that the solution is global.
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HOMOGENIZATION OF THE STOKES PROBLEM

KAREK CHAFIA AND OULD-HAMMOUDA AMAR

Abstract. We consider the Stokes problem in a perforated domain in
RN, N ≥ 3, with small holes ε-periodically distributed. The size of the
holes is of the order (εδ(ε)) with δ(ε) −→ 0 as ε goes to zero. On the
boundary of the holes we prescribe a Robin-type condition depending
on a parameter γ. The aim is to give the asymptotic behavior of the
velocity and of the pressure of the fluid as ε goes to zero.
In this work we use the periodic unfolding method introduced by Cio-
ranescu, Damlamian and Griso in [1] and [2] which allows to consider a
general geometric framework.
We give the limit problems corresponding to different values of γ (Darcy,
Brinkmann or Stokes type problems).

76M50; 34M40; 76S05.

homogenization; periodic unfolding; small holes; Stokes sys-
tem..
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HIGHER ORDER BOUNDARY VALUED PROBLEM FOR

IMPULSIVE DIFFERENTIAL INCLUSIONS

JOHNNY HENDERSON, ABDELGHANI OUAHAB, AND SAMIA YOUCEFI

Abstract. In this paper, we present some existence results for the
higher order impulsive differential inclusion:




x(n) ∈ F (t, x(t), x′(t), . . . , x(n−1)(t)), a.e. t ∈ J = [0,∞)\{t1, . . .},

∆x(i)|t=tk = Iik(x(tk), x′(tk), . . . , x(n−1)(tk)), i = 0, 1, . . . , n− 1,
k = 1, . . . ,

x(i)(0) = x0i, (i = 0, 1, . . . , n− 2), x(n−1)(∞) = βx(n−1)(0),

where F : R+×E×E×· · ·×E → P(E) is a multifunction, x0i ∈ E, i =
0, 1, . . . , n − 1, 0 = t0 < t1 < · · · < tm < · · · , limk→∞ tk = ∞, Iki ∈
C(E × · · · × E,E) (i = 1, . . . , n − 1, k = 1, . . . , ), ∆x|t=tk = x(t+k ) −
x(t−k ), x(t+k ) = limh→0+ x(tk +h) and x(t−k ) = limh→0+ x(tk− h) repre-

sent the right and left limits of x(t) at t = tk, respectively, x(n−1)(∞) =

limt→∞ x
(n−1)(t), and (E, | · |) is real separable Banach space.

We present some existence results when the right-hand side multi-valued
nonlinearity can be either convex or nonconvex.

2010 Mathematics Subject Classification. 34K45, 34A60, 47D62,
35R12

Keywords and phrases. Impulsive differential inclusions, multi-valued
maps,decomposable set, fixed point.

1. Define the problem

Consider nth order impulsive differential inclusions of the form,

(1) x(n) ∈ F (t, x(t), x′(t), . . . , x(n−1)(t)), a.e. t ∈ J = [0,∞)\{t1, . . .}
(2)

∆x(i)|t=tk = Iik(x(tk), x
′(tk), . . . , x

(n−1)(tk)), i = 0, 1, . . . , n− 1, k = 1, . . . ,

(3) x(i)(0) = x0i, (i = 0, 1, . . . , n− 2, ), x(n−1)(∞) = βx(n−1)(0),

where F : R+ × E × E × · · · × E → PE) is a multifunction, x0i ∈ E, i =
0, 1, . . . , n− 1, 0 = t0 < t1 < · · · < tm < · · · , limk→∞ tk =∞, Iik ∈ C(E ×
· · · × E,E) (i = 1, . . . , n − 1, k = 1, . . . , ), ∆x(i)|t=tk = x(i)(t+k ) − x(i)(t−k ),

where x(i)(t+k ) = limh→0+ x
(i)(tk+h) and x(i)(t−k ) = limh→0+ x

(i)(tk− h) rep-

resent the right and left limits of x(i)(t) at t = tk, respectively, x(n−1)(∞) =

limt→∞ x(n−1)(t), and (E, | · |) is real separable Banach space.

Our goal in this work is to give some existence results when the right-
hand side multi-valued nonlinearity can be either convex or nonconvex. We
give an existence result based on nonlinear alternative of Leray-Schauder
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type for condensing maps (in the convex case), then some existence results
are obtained based on the nonlinear alternative of Leray-Schauder type and
on the Covitz and Nadler fixed point theorem for contractive multi-valued
maps (in the nonconvex case).
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ITERATES OF DIFFERENTIAL OPERATORS OF SHUBIN

TYPE IN ANISOTROPIC ROUMIEU GELFAND-SHILOV

SPACES

M’HAMED BENSAID AND RACHID CHAILI

Abstract. The purpose of this work is to show the iterate property
for globally elliptic differential operators with polynomial coefficients
(called Shubin operators), in the anisotropic Roumieu Gelfand-Shilov

spaces S
{M}
{N} (Rn).

2010 Mathematics Subject Classification. Primary 35B65, 35J30,
secondary 35H10, 46E10.

Keywords and phrases. Globally elliptic operators, Iterates of oper-
ators, Anisotropic Roumieu Gelfand-Shilov spaces, Operators of Shubin
type.

1. Define the problem

The aim of this paper is to give an extension of the known iterate theo-
rem of Kotake-Narasimhan [4] in anisotropic Roumieu Gelfand-Shilov classes

S
{M}
{N} (Rn), for globally elliptic operators with polynomial coefficients, called

operators of Shubin type. The iterate problem consists to characterize func-
tional spaces in help with iterates of differential operators, it gives also
results of regularity of solutions of partial differential equations in these
spaces. At first time the functional spaces considered are those having local
properties as different types of Gevrey spaces (see [1, 2, 5]), and Roumieu
spaces defined by sequences of positive real numbers (see [3]).

For the definition of Roumieu Gelfand-Shilov spaces S
{M}
{N} (Rn), we will

consider sequences of positive real numbers (Mp) satisfying the following
conditions:

Logarithmic convexity:

(1) M0 = 1, M2
p ≤Mp+1Mp−1, ∀p ∈ N∗;

Stability under derivation and multiplication:

(2) ∃H > 0 :

(
p+ q

p

)
MpMq ≤Mp+q ≤ Hp+qMpMq, ∀p, q ∈ N;

Example 1.1. The sequence Mp = p!s, s ≥ 1, satisfies the conditions
(1)− (2) . It is called Gevrey sequence of order s.

Definition 1.2. Let (Mp) and (Np) two sequences satisfying the conditions
(1)− (2) , we call anisotropic Roumieu Gelfand-Shilov space and we denote

S
{M}
{N} (Rn), the space of all functions u ∈ C∞ (Rn) such that

(3) ∃C > 0, sup
x∈Rn

∣∣∣xβ∂αu (x)
∣∣∣ ≤ C |α|+|β|+1M|α|N|β|, ∀α ∈ Nn, ∀β ∈ Nn
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Let P be a partial differential operator with polynomial coefficients, i.e.
of the form

(4) P (x,D) =
∑

|α|+|β|≤m
Cαβx

βDα, Cαβ ∈ C, and Dα = (i)−|α| ∂α,

and let Pm (x, ξ) =
∑

|α|+|β|=m
Cαβx

βξα its principal symbol.

Definition 1.3. Let
(
M̃p

)
a sequence satisfying the conditions (1)−(2) , we

call Roumieu Gelfand-Shilov vector of the operator P associated to
(
M̃p

)
,

every function u ∈ C∞ (Rn) such that,

(5) ∃C > 0,
∥∥∥P lu

∥∥∥
L2(Rn)

≤ C l+1M̃lm, ∀l ∈ N

For l = 0 one admits P 0u = u.
The space of all Roumieu Gelfand-Shilov vectors of P, is denoted S{M̃} (Rn, P ) .

Definition 1.4. We say that P is globally elliptic if

Pm (x, ξ) 6= 0, ∀ (x, ξ) 6= (0, 0)

The iterate property for the globally elliptic operator P in the anisotropic

Roumieu Gelfand-Shilov space S
{M}
{N} (Rn), means the inclusion

S{M̃} (Rn, P ) ⊂ S{M}{N} (Rn) .

2. The main result

Theorem 2.1. Let (Mp) ,
(
M̃p

)
and (Np) three sequences satisfying the

conditions (1) − (2) . If the differential operator P (x,D) of the form (4) is

globally elliptic and the sequences (Mp) ,
(
M̃p

)
and (Np) satisfy the condition

(6) M̃p+q .MpNq, ∀p, q ∈ N,

then S{M̃} (Rn, P ) ⊂ S{M}{N} (Rn) .
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INFINITELY MANY OF WEAK SOLUTIONS FOR
P-LAPLACIAN PROBLEM WITH IMPULSIVE EFFECTS

MENASRIA LINDA, BOUALI TAHAR, AND AUTHOR3

Abstract. By Fountain theorem we obtain in�nitely many weak solu-
tions for a class of elliptic problem for the p-laplacian impulsive di¤er-
ential equation with Dirichlet boundary conditions.

2010 Mathematics Subject Classification. 35J60, 35B30, 35B40.

Keywords and phrases. Impulsive di¤erential equation, weak solu-
tion, Fountain theorem.

1. Define the problem

In this paper, we will investigate the existence of weak solutions for the
following Dirichlet boundary conditions:

(1.1)

8>>>>>>>><>>>>>>>>:

�
�
� (x)

���u0���p�2 u0�0

+ s (x) jujp�2 u = f (x; u) in [0; T ]

4
����u0 (xj)���p�2 u0 (xj)� = Ij (u (xj)) ; j = 1; 2; :::; n

u (0) = u (T ) = 0

where p > 1; T > 0; � (x) ; s (x) 2 L1 ([0; T ]) satisfy the conditions

essinft2[0; T ] � (x) > 0; essinft2[0; T ] s (x) > 0; 0 = x0 < x1 < x2 < � � � <
xn < xn+1 = T; and Ij : R �! R are continuous for every j = 1; 2; � � � ; n;
f 2 (C ([0; T ])� R; R) :

Moreover4
����u0 (xj)���p�2 u0 (xj)� = ���u0 �x+j ����p�2 u0 �x+j �����u0 �x�j ����p�2 u0 �x�j � ;

where u
0
�
x+j

�
and u

0
�
x�j

�
denote the right and left limits, respectively, of

u
0
(x) at x = xj , for j = 1; 2;. . . ,n:
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Initial value problem for Impulsive
Caputo-Hadamard Fractional Differential

Equations with Integral Boundary Conditions
Aida Irguedi
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Abstract

In this paper, we establish conditions for the existence solutions of initial value
problem impulsive Caputo-Hadamard fractional differential equations with inte-
gral boundary conditions. We use Banach contraction theory fixed point,Schauder
fixed point theorem and nonlinear alternative of Leray-Schauder. Also, we
present an example to illustrate our main results.

This paper deals with the existence and uniqueness of solutions to initial
value problems (IVP for short) for impulsive fractional differential equation with
integral boundary conditions:

H
C Dry(t) = f(t, y(t)), for a.e. t ∈ J = [1, T ], , t ̸= tk, k = 1, ..., m, 1 < r ≤ 2.

(1)
∆y|t=tk = Ik(y(t−k )), ,t = tk, k = 1, .., m (2)

∆y′ |t=tk= Ik(y(t−k )), ,t = tk, k = 1, .., m (3)

y(1) =

∫ T

1
g(s, y(s))ds, y′(1) =

∫ T

1
h(s, y(s))ds (4)

where H
c Dr is the Caputo-Hadamard fractional derivative f, g and h : J ×R → R

are given function, Ik, IkR → R, k = 1, ..., m are continuous functions, ∆y|t=tk =
y(t+k ) − y(t−k ), y(t+k ) = lim

ε→0+
y(tk + ε) and y(t−k ) = lim

ε→0−
y(tk + ε),and ∆y′ has a

similar meaning for y′(t) ,1 = t0 < t1 < ... < tm < tm+1 = T.

Key words and phrases: Fractional differential equations;impulses; Caputo-Hadamard
fractional derivative;fi

xed point theorem.
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LIPSCHITZ OPERATORS WITH AN INTEGRAL
REPRESENTATION

KHALED HAMIDI

Abstract. For 1 ≤ p < ∞, the class of p-representable linear oper-
ators was introduced in 1986 by Roshdi Khalil studied the definition,
properties and same results of coincidences for these operators in [?].In
this chapter we introduce the concept of Lipschitz p-representable op-
erators, (1 ≤ p < ∞), between a metric space and a Banach space.
We represent these mappings by a Bochner integrable function, obtain-
ing in this way a rich factorization theory through the classical Banach
spaces C(K), Lp(µ,K) and L∞(µ,K). Also we show that this type of
operators in the theory of composition Banach Lipschitz operator ideal,
the relationship between these mappings and some well known Lipschitz
operators.
Finally for p = ∞, we characterize the Lipschitz ∞-representable

mappings by a factorization schema through a compact vectors integral
operator.

2010 Mathematics Subject Classification. Primary 47B10, 47L20;
Secondary 46B28, 46B03.

Keywords and phrases. Lipschitz function, Arens and Eells space,
operators with integral representaion, Lipschitz operators with in-
tegral representation, vector measure representation.

1. Introduction and Preliminaries

Let X be a pointed metric space. We denote by X# the Banach space
of all Lipschitz functions T : X → R which vanish at 0 under the Lipschitz
norm

Lip (T ) = sup
x 6=E

dE(T (x), T (y))

dX(x,E)
: x, y ∈ X

We denote by F(X) the free Banach space over X [2], i.e., F(X) is the
completion of the space

Æ (X) =

{
n∑
i=1

λiδxi,yi , (λi)
n
i=1 ⊂ R, (xi)

n
i=1 , (yi)

n
i=1 ⊂ X

}
(Æ(X) the space of Arens and Eells of a metric space X [07]) with the norm

‖m‖F(X) = inf


n∑
j=1

|λj | dX
(
xj , x

′
j

)
,m =

n∑
i=1

λiδxi,x
′
i

 ,

where the function δx,E : X# → R is defined as follows δx,E(f) = f(x) −
f(E).
We have F(X)∗ = X#. For a general theory of free Banach space see [2].
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LetX be a metric space and E be a Banach space, we denote by Lip0(X;E)
the Banach space of all Lipschitz functions T : X → E such that T (0) =
0 with pointwise addition and Lipschitz norm. Note that for any T ∈
Lip0(X;E) there exists a unique linear map (linearization of T ) TL : F(X)→
E such that TL ◦ δX = T and ‖TL‖ = Lip (T ) , i.e., the following diagram

commutes: T : X
δX→ F(X)

TL→ E.
where δX is the canonical embedding so that 〈δX , f〉 = 〈δx,0, f〉 = f(x)

for f ∈ X#.
field (also called a Boolean algebra) of subsets of Ω [3, III, Definition 1.3].

Given a Banach space E, let G : F → E be a vector measure [1, Definition
I.1.1] . The variation of G is the extended nonnegative function |G| whose
value on a set M ∈ F is given by|G| (M) = supπ

∑
A∈π ‖G (A)‖. Where the

supremum is taken over all partitions π ofM into a finite number of pairwise
disjoint members of F .
The semivariation of G is the extended nonnegative function ‖G‖ whose

value on a set M ∈ F is given by ‖G‖ (M) = sup {|e∗ ◦ G|} , e∗ ∈ E∗, ‖e∗‖ ≤
1.where |e∗ ◦ G| is the variation of the scalar-valued measure e∗ ◦ G [1, Defi-
nition I.1.4].

2. Definition and factorization of Lipschitz operators with an
integral representation

In this section we introduce the Lipschitz operators which admit an inte-
gral representation and study their factorization properties

Definition 1. We say that an operator T ∈ Lip0(X,E) admits an integral
representation

T (x) =

∫
B
X#

f(x)dG (f) (x ∈ X)

for some E∗∗-valued measure G defined on the Borel sets of BX# such that
conditions (a) and (b) of Theorem1.1 are verified when we take K = BX# .
We denote by IRLip (X,E) the space of all operators T ∈ Lip0(X,E)

that admit an integral representation. For every T ∈ IRLip (X,E), we
define ‖T‖IRLip = inf ‖G‖ (BX#).

Proposition 2.1. An operator T ∈ Lip0(X,E) admits an integral repre-
sentation if and only if it has an extension S ∈ L(C(BX#), E), such that

the following diagram is commutative: T : X
iX→ C(BX#)

S→ E.

Theorem 2.2. Given an operator T ∈ Lip(X,E), the following assertions
are equivalent:

(a) T ∈ IRLip (X,E)

(b) there is an operator S : C(BX#) → E such that T factors: T : X
iX→

C(BX#)
S→ E

(c) there are a compact HausdorffspaceK, an embedding i
′
X ∈ Lip(X,C(K)),

and an operator S
′ ∈ L(C(K), E) such that the following diagram is com-

mutative T : X
i
′
X→ C(BX#)

S
′

→ E. If one (and then all) of these assertions
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holds, we have

‖T‖IRLip = inf ‖S‖ = inf Lip
(
i
′
X

)∥∥∥S′∥∥∥ .
Theorem 2.3. The pair (IRLip, ‖.‖IRLip) is a Lipschitz operator ideal

We devoted to giving applications of the ideal IRLip to characterize L∞-
spaces.
We have proved that T ∈ Lip(X,E) belongs to IRLip(X,E) if and only

if T factors through a L∞(Ω, µ) space, where (Ω,Σ, µ) is a σ-finite measure
space, is a stronger property as the following well-known result shows.

Theorem 2.4. Given an operator T ∈ Lip0(X,E), consider the following
assertions:

(a) T ∈ IRLip(X,E)
(b) kE ◦ T is extendible;
(c) kE ◦ T factors through an L∞(Ω, µ)-space;
(d) kE ◦ T ∈ IR(X,

(
E#
)∗

);
Then (a) =⇒ (b)⇐⇒ (c)⇐⇒ (d), but (b) does not imply (a).

3. Conclusion

In this work, we have made a study about the Lipschitz operator with an
integral representation and we given the operator ideal and some proposi-
tions.
In our research we dealt with the Lipschitz opeartor with an integral

representation It turns out that an operator belongs to this class if and
only if it factors through a C(K) space. As an application, we characterize
L∞-spaces.
Finally, The propositions of relationship between our class and Lipschitz

p-summing operators, Lipschitz p-Grothendieck- integral operators, strongly
Lipschitz p-nuclear operators and Lipschitz weakly compact operators are
true?.
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LAPLACE-LIKE TRANSFORM HOMOTOPY

PERTURBATION METHOD

RACHID BELGACEM AND AHMED BOKHARI

Abstract. The main objective of this present work is to combine the
homotopy perturbation method with the Shehu transform (also called
Laplace-Like tansform) to solve non-linear partial differential equations.
The resulting method is called the Shehu Homotopy Perturbation Method
(SHPM).

2010 Mathematics Subject Classification. 44A05, 26A33, 44A20,
34K37.

Keywords and phrases. Homotopy perturbation method, Shehu trans-
form method, partial differential equations.

1. Define the Problem

The Shehu transform [5] of the function v(t) of exponential order is defined
over the set of functions,
(1)

A =

{
v(t) : ∃N, k1, k2 > 0, |v(t)| < N exp

( |t|
ki

)
, if t ∈ (−1)j × [0, ∞)

}
,

by the following integral

H [v(t)] = V (s, u) =

∞∫

0

exp(
−st
u

)v(t)dt

= lim
α−→∞

α∫

0

exp(
−st
u

)v(t)dt, s > 0, u > 0.(2)

It converges if the limit of the integral exists, and diverges if not.
The inverse Shehu transform given by

(3) v(t) = H−1 [V (s, u)] =
1

2πi

α+i∞∫

α−i∞

1

u
exp(

st

u
)V (s, u)ds,

The basic idea of this method is to solve the following general non-linear
partial differential equation

(4)
∂mU(x, t)

∂tm
+RU(x, t) +NU(x, t) = g(x, t),

where ∂mU(x,t)
∂tm is the partial derivative of the function U(x, t) of order m

(m = 1, 2, 3), R is the linear differential operator, N represents the general
non-linear differential operator, and g(x, t) is the source term.

1
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By Applying the Shehu transform on both sides of Equ.(4), and using its
properties[1, 2], we get:

H [U(x, t)] =

m−1∑

k=0

(u
s

)k+1 ∂kU(x, 0)

∂tk
+
um

sm
H [g(x, t)]− um

sm
H [RU(x, t) +NU(x, t)] .

(5)

Applying the inverse transform on both sides of Equ.(5), we get:

(6) U(x, t) = G(x, t)−H−1
(
um

sm
H [RU(x, t) +NU(x, t)]

)
,

where G(x, t), represents the term arising from the source term and the
prescribed initial conditions.

The classical homotopy perturbation technique HPM for Eq.(6) is con-
structed as follows [3, 4]:

The solution can be expressed by the infinite series given below

(7) U(x, t) =
∞∑

n=0

pnUn(x, t),

where p is considered as a small parameter (p ∈ [0, 1]). The non-linear term
can be decomposed as:

(8) NU(x, t) =

∞∑

n=0

pnHn(u),

where Hn are He’s polynomials of U0, U1, U2, ..., Un, which can be cal-
culated by the following formula

(9) Hn(u0, ..., un) =
1

n!

∂n

∂pn

[
N

( ∞∑

i=0

piUi

)]

p=0

, n = 0, 1, 2, 3, · · ·

Substituting (7) and (8) in Eq.(6) and using HPM by He, we get:

∞∑

n=0

pnUn = G(x, t)

− p
(
H−1

[(u
s

)m
H

[
R
∞∑

n=0

pnUn +
∞∑

n=0

pnHn(u)

]])
,(10)

comparing the coeffcients of powers of p; yields

p0 : U0(x, t) = G(x, t),

pn : Un(x, t) = −H−1
((u

s

)m
H [RUn−1(x, t) +Hn−1(u)]

)
,

where n > 0, n ∈ N.
Finally, we approximate the analytical solution, U(x, t), by

(11) U(x, t) = lim
N→∞

N∑

n=0

Un(x, t).
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Order of Meromorphic Solutions to
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Differential-Difference Equations
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Abstract. In this paper, we investigate the growth of meromorphic solu-
tions of non-homogeneous linear difference equation

An(z)f(z + cn) + · · ·+ A1(z)f(z + c1) + A0(z)f(z) = An+1(z),

where An+1 (z) , · · · , A0 (z) are (entire) or meromorphic functions and cj
(1, · · · , n) are non-zero distinct complex numbers. Under some conditions
on the (lower) order and the (lower) type of the coefficients, we obtain esti-
mates on the lower bound of the order of meromorphic solutions of the above
equation. We extend early results due to Chen and Zheng.

Key words : Linear difference equation, Meromorphic solution, Order, Type,
Lower order, Lower type

1 Introduction and statement of main results

Throughout this paper, we use the standard notation and basic results of Ni-
vanlinna’s value distribution theory. In addition, we use ρ(f), µ(f), τ(f), τ(f)
to denote respectively the order, the lower order, the type, and the lower type
of a meromorphic function f in the complex plane, also when f is entire func-
tion we use the notation τM , τM(f) respectively for the type and lower type
of f (see e.g. ([1] , [2] , [3]), [5]))

1Corresponding author

1
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Recently, many articles focused on complex difference equations ([3] , [4] , [5]
. The back-ground for these studies lies in the recent difference counter-
parts of Nevanlinna theory. The key result here is the difference analogue of
the lemma on the logarithmic derivative obtained by Halburd-Korhonen [6]
and Chiang-Feng [4], independently. Several authors have investigated the
properties of meromorphic solutions of complex linear difference equation

Anf(z + cn) + An−1f(z + cn−1) + · · ·+ A1f(z + c1) + A0f(z) = 0 (1)

when one coefficient has maximal order or among coefficients having the max-
imal order, exactly one has its type stricly greater than others and achieved
some important results (see e.g. ([3]). Very recently [5], Luo and Zheng have
studied the growth of meromorphic solutions of (1) when more than one co-
efficient has maximal lower order and the lower type strictly greater than
the type of other coefficients, and obtained that every meromorphic solution
f 6≡ 0 of (1) satisfies ρ(f) ≥ µ(Al) + 1.

OUR POSITION
Question 1.1 What can be said about the growth of meromorphic solutions
of non-homogeneous linear difference equation ?

The purpose of this paper is to extend the results of Luo and Zheng for the
complex non-homogeneous linear difference equation

An(z)f(z + cn) + · · ·+ A1(z)f(z + c1) + A0(z)f(z) = An+1(z), (2)

We obtained that every meromorphic solution f of (2) satisfies ρ(f) ≥ µ(Al)
if An+1 6≡ 0. Furthermore, if An+1 ≡ 0, then every meromorphic solution
f 6≡ 0 of (2) satisfies ρ(f) ≥ µ(Al) + 1.

Acknowledgements. This paper was supported by the Directorate-General
for Scientific Research and Technological Development (DGRSDT).
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Mild solution of semilinear time fractional
reaction diffusion equations with almost sectorial

operators and application

Abstract

This study concerns the semilinear reaction diffusion equation involving
the Caputo fractional time derivative of order α(0 < α < 1) under some con-
ditions on the initial data and boundary conditions. We prove the existence
and uniqueness of a mild solution of abstract fractional Cauchy problems
with almost sectorial operators A, By constructing a pair of families of op-
erators in terms of the generalized Mittag-Leffler-type functions and the
resolvent operators associated with A. Application part are considered to
our problem in space of Hölder continuous functions.

AMS SC 2010: 35K57, 34A08, 65J08, 47A10 , 33E12, 26A33.
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Stability results by Krasnoselskii’s fixed point theorem for fractional
differential problem with initial conditions

1 Naimi Abdelouahab , 1 Brahim Tellab, 2Khaled Zennir

1Department of Mathematics, Ouargla University,
E-mail: naimi.abdelouahab@univ-ouargla.dz, brahimtel@yahoo.fr
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Abstract: A Caputo fractional differential equation with initial conditions is considered. Using
Krasnoselskii’s fixed point theorem to proof the stability results on a weighted Banach space, then we
give an example to illustrate our stability results.

Keywords: Stability and Asymptotically stability , Caputo fractional derivative, Krasnoselskii’s
fixed point, weighted Banach space.
2010 Mathematics Subject Classification: 34A08, 26A33, 34K20, 34K40

Position of the problem :

Let consider the following IVP of fractional differential equation




CDp
0+x(t) = g(t, x(t)) + CDp−1

0+ f(t, x(t)), t ∈ [0,+∞),

x(0) = x0, x′(0) = x1.
(0.1)

where 1 < p < 2, (x0, x1) ∈ R2, f, g : R+ × R −→ R are continuous functions with f(t, 0) = g(t, 0) ≡ 0
and CDp is the standard Caputo fractional derivative of order p.

In this presentation, we will show the stability result of the solution in a weighted Banach space, by the
Krasnoselskii’s fixed point theorem.
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A class of autonomous di¤erential systems with
explicit limit cycles

A. Kina(1), A. Berbache(2) and A. Bendjeddou(3)

Abstract
For a given family of planar di¤erential equations it is a very di¢ cult

problem to determine an upper bound for the number of its limit cycles.
In this paper we give a family of planar polynomial di¤erential systems
of degree odd whose limit cycles can be explicitly described using polar
coordinates. The given family of planar polynomial di¤erential systems
can have at most two explicit limit cycles, one of them algebraic and the
other one non�algebraic.
2010 Mathematics Subject Classi�cation: 34A05, 34C07.
Key Words: Planar polynomial di¤erential system, algebraic and non�
algebraic limit cycle, hyperbolicity, Riccati di¤erential equation.

1 Main result

As a main result, we shall prove the following theorem.

Theorem 1 The three-parameters polynomial di¤erential system8><>: _x =
�
x� x

�
x2 + y2

�2 � 4y��a �x2 + y2�2 + 4bxy �x2 � y2��� x��x2 + y2�2 � �2
_y =

�
y � y

�
x2 + y2

�2
+ 4x

��
a
�
x2 + y2

�2
+ 4bxy

�
x2 � y2

��
� y

��
x2 + y2

�2 � �2
(1)

where a; b;  2 R�+ possesses exactly two limit cycles: the circle (�1) :
�
x2 + y2

�2�
 = 0 surrounding a transcendental limit cycle (�2) explicitly given in polar co-
ordinates (r; �) by the equation

r =

0@ +  e��

r4�
r4��

� e�� + f (�)

1A 1
4

;

with f(�) =
Z �

0

e�s

a+ b sin 4s
ds and r� =

�
 f(2�)
1�e�2�+f(2�)

� 1
4

, when the following

condition is assumed :
b2 < a2:

1
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Example 2 For a = 2, b = 1
2 , and  = 3 the system (1) becomes8><>: _x = 2

�
3x� x

�
x2 + y2

�2 � 12y���x2 + y2�2 + xy �x2 � y2��� x��x2 + y2�2 � 3�2
_y = 2

�
3y � y

�
x2 + y2

�2
+ 12x

���
x2 + y2

�2
+ xy

�
x2 � y2

��
� y

��
x2 + y2

�2 � 3�2
his system possesses two limit cycles : the circle (�1) :

�
x2 + y2

�2 � 3 = 0
surrounding a transcendental limit cycle (�2) explicitly given in polar coordinates
(r; �) by the equation

r =

0@2 + 2 e��

r4�
r4��

� e�� + f (�)

1A 1
4

with f(�) =
Z �

0

e�s

2 + 1
2 sin 4s

ds and r� =
�
3 f(2�)
1�e�2�+f(2�)

� 1
4

= 0:995 07:
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NON-EXTINCTION OF SOLUTIONS FOR A CLASS OF P-
LAPLACIAN NONLOCAL HEAT EQUATIONS WITH

LOGARITHMIC NONLINEARITY

TOUALBIA SARRA

Abstract. problem of a nonlocal heat equations with logarithmic nonlinear-
ity in a bounded domain. By using the logarithmic Sobolev inequality and
potential wells method, we obtain the decay, blow-up and non-extinction of
solutions under some conditions, and the results extend the results of a recent
paper Lijun Yan and Zuodong Yang (2018)..

1. Introduction

In this paper, we consider the Neumann problem to the following initial parabolic
equation with logarithmic source:8>>><>>>:

ut � div
�
jrujp�2ru

�
= jujp�2 u log juj �

H


jujp�2 u log juj dx; x 2 
; t > 0;

@u (x; t)

@�
= 0; x 2 @
; t > 0;

u (x; 0) = u0; x 2 
; t > 0;
(1.1)

where 
 is a bounded domain in RN with smooth boundary @
; p 2 (2;+1),H


u0dx =

1
j
j
R


u0dx = 0 with u0 6= 0:

For prouve our result It is necessary to note that the presence of the logarithmic
nonlinearity causes some di¢ culties in deploying the potential well method. In
order to handle this situation we need the following logarithmic Sobolev inequality
which was introduced in.

Lemma 1.1. Let p > 1; � > 0; and u 2W 1;p (Rn)� f0g : Then we have

p
R
Rn ju(x)j

p
log
�

ju(x)j
ku(x)kLp(Rn)

�
dx+ n

p log
�
p�e
nLp

� R
Rn ju(x)j

p
dx

� �
R
Rn jru(x)j

p
dx;

where

Lp =
p

n

�
p� 1
e

�p�1
��

p
2

24 �
�
n
2 + 1

�
�
�
np�1p + 1

�
35

p
n

:

Non-extinct in �nite time

1991 Mathematics Subject Classi�cation.
Key words and phrases. non-extinction in �nit time, heat equation, logarithmic Sobolev in-

equality.
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2 TOUALBIA SARRA

De�nition: (Finite time blow-up) Let u(x; t) be a weak solution of (1).We
call u(x; t) blow-up in �nite time if the maximal existence time T is �nite and

lim
t!T�

ku(:; t)k2 = +1:

Lemma 1.2. Let � be a positive, twice di¤erentiable function satisfying the follow-
ing conditions

�(t) > 0; and �
0
(t) > 0;

for some t 2 [0; T ) ; and the inequality
�(t)�

00
(t)� �(�

0
(t))2 � 0; 8t 2

�
t; T

�
; (1.2)

where � > 1: Then we have

�(t) �
�

1

�1��(t)� �(t� t)

�
; t 2

�
t; T �

�
:

with � is a positive constant, and

T � = t+
�(t)

(�� 1)�0(t) :

This implies
lim
t!T�

�(t) =1:

Theorem 1.3. Assume 0 < J(u0) < M and u 2 W�
1 , then the solution u(x; t) of

problem (1) is non-extinct in �nite time, de�ned by

T � = t+

R t
0
ku(s)k22 ds

(p�22 )
u(t)2

2

; s 2
�
t; T �

�
:

2.
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NONLINEAR VOLTERRA INTEGRAL EQUATIONS AND

THEIR SOLUTIONS

AHLEM NEMER, ZOUHIR MOKHTARI, AND HANANE KABOUL

Abstract. In order to solve nonlinear Volterra integral equations with
weakly singular kernels, we need to convert these integral equations into
nonlinear systems ( see [1, 2, 3, 4, 5, 7] for details of integral equations).
For that, we require a product integration method which leads to at-
tain best approximate solutions ( see [6, 8, 9]). By giving a numerical
application, we can prove that we have precise approximate solutions.
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Keywords and phrases. Nonlinear integral equations, Volterra equa-
tions, Weakly singular kernels.
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NONLINEAR ANISOTROPIC ELLIPTIC UNILATERAL

PROBLEMS WITH VARIABLE EXPONENTS AND

DEGENERATE COERCIVITY

HOCINE AYADI

Abstract. In this talk, we prove the existence of entropy solutions for
some nonlinear anisotropic degenerate elliptic unilateral problems with
L1-data. The functional framework involves anisotropic Sobolev spaces
with variable exponents as well as variable exponent Marcinkiewicz
spaces. Our results are natural generalization and extension of previous
studies [1, 2, 3].
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Keywords and phrases. Unilateral problems, entropy solutions, vari-
able exponents, degenerate coercivity, L1-data.

1. Define the problem

Let Ω be a bounded domain in RN (N ≥ 2) with smooth boundary ∂Ω
and f ∈ L1(Ω). We consider the following nonlinear anisotropic problem

(1)




−

N∑
i=1

Di

(
ai(x,∇u)

(1+|u|)γi(x)
)

= f in Ω,

u = 0 on ∂Ω,

where pi : Ω→ (1,+∞) and γi : Ω→ [0,+∞) for i = 1, . . . , N are continu-
ous functions such that

(2) 1 < p(x) < N for all x ∈ Ω.

and

(3) p+(x) < p∗(x) for all x ∈ Ω,

where 1
p(x) = 1

N

N∑
i=1

1
pi(x) , p+(x) = max

1≤i≤N
{pi(x)}, and p?(x) = Np(x)

N−p(x) .

We assume, for i = 1, . . . , N , that ai : Ω×RN → R is a Carathéodory func-
tion satisfying for almost every x ∈ Ω and for every ξ = (ξ1, . . . , ξN ), ξ′ =
(ξ′1, . . . , ξ

′
N ) ∈ RN , with ξi 6= ξ′i, the following assumptions

(4) |ai(x, ξ)| ≤ β|ξi|pi(x)−1,

(5) ai(x, ξ)ξi ≥ α|ξi|pi(x),

(6)
[
ai(x, ξ)− ai(x, ξ′)

] [
ξi − ξ′i

]
> 0,

where α > 0, and β > 0.
we denote

L∞+ (Ω) = {h : Ω→ R is measurable : 0 < h− ≤ h+ <∞},
1
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where
h− = ess inf

x∈Ω
h(x) and h+ = ess sup

x∈Ω
h(x).

Definition 1.1. Let p ∈ L∞+ (Ω). We say that a measurable function u :

Ω→ R belongs to the Marcinkiewicz spaceMp(·)(Ω) if∫

{|u|>λ}
λp(x)dx ≤ C, for all λ > 0.

where χE denotes the characteristic function of a measurable set E.

Let k ≥ 0, we consider the usual truncation Tk(s) defined by

Tk(s) =

{
s, if |s| ≤ k,
k s
|s| , if |s| > k.

For a given function ψ ∈ W
1,−→p (·)
0 (Ω) ∩ L∞(Ω), we define the following

convex set
Kψ =

{
v ∈W 1,−→p (·)

0 (Ω) : v ≥ ψ a.e. in Ω
}
.

Definition 1.2. An entropy solution of the obstacle problem (A, f, ψ) asso-
ciated to the problem (1) is a measurable function u such that

(7)





u ≥ ψ a.e. inΩ,

Tk(u) ∈W 1,−→p (·)
0 (Ω), ∀k > 0,

N∑

i=1

∫

Ω

ai(x,∇u)DiTk(u− v)

(1 + |u|)γi(x)
dx ≤

∫

Ω
f Tk(u− v)dx,

∀v ∈ Kψ ∩ L∞(Ω).

Our main result is the following theorem.

Theorem 1.1. Assume that (4)-(6), and (3) hold true and that

(8) 0 ≤ γ+
+ < p−− − 1,

where γ+
+ = max{γ+

1 , . . . , γ
+
N} and p−− = min{p−1 , . . . , p−N}. Then, the prob-

lem (1) has at least one entropy solution u ∈ Mq(·)(Ω) and |Diu|ξi(x) ∈
Mq(·)(Ω), i = 1, . . . , N, with

q(x) = p+(x)

(
1− 1 + γ+

+

p−−

)
and ξi(x) =

pi(x)

q(x) + 1 + γi(x)
.
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ON EXACT CONTROLLABILITY AND COMPLETE

STABILIZABILITY FOR DEGENERATE SYSTEMS IN

HILBERT SPACES

MOHAMED HARIRI AND MEHDI BENABDALLAH

Abstract. The aim of this research is concerned with the relations
between exact controllability and complete stabilizability for degenerate
systems in Hilbert spaces. Using the spectral theory of the operator
pencil λA−B , λ ∈ C to obtain some necessary and sufficient condition
for the exact controllability. Where A and B are bounded operators in
Hilbert spaces, the operator A is not necessarily invertible.

2010 Mathematics Subject Classification. 34L05, 93B05, 93D20.
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1. Introduction

In the present paper, we consider an control problem for the system de-
scribed by the degenerate differential equation

Ax′(t) = Bx(t) + Cu(t) , t ≥ 0, x ∈ H .(1)

For system (1) we pose the initial condition

(2) x(t0) = x0.

Where A , B and C are bounded operators in Hilbert spaces H. The opera-
tor A is not necessarily invertible, the function u is square integrable in the
sense of Bochner.

The linear part of system (1) corresponds to the operator pencil

L(λ) = λA−B , λ ∈ C

which is defined on the set D = DA ∩ DB 6= {0} we denote the space of
bounded linear operators mapping H into H, we use the resolvent

R(λ) = L−1(λ).

For a detailed expositions, see [6, 7, 8] we have the direct sum decompo-
sitions H = HuH , D = D1 uD2,

such that the operator pencil L(λ) has the block structure

λA−B = diag[λA1 −B1, B2], D1 uD2 → HuH.
1
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2 MOHAMED HARIRI AND MEHDI BENABDALLAH

If D1 6= {0}, then there exists an inverse operator A−11 .

The mild solution of the system (1)

x(t, x0, u) = S(t)x0 +

∫ t

0
S(t− τ)A−11 Cu(τ)dτ,(3)

Definition 1.1. The system (1) is exactly controllable with respect to L2([0, 1],H)
on [0, t] such that for all x0, x1 ∈ H and for some control u(t), we have
x(t, x0, u) = x1.

Consider the following bounded linear operators

G : L2([0, 1],H)→ H, Gx =

∫ t

0
S(t− τ)A−11 Cu(τ)dτ

W : H → H, Wx =

∫ t

0
S(t− τ)C∗A−11 CS∗(t− τ)xdτ

is a uniformly positive definite operator and then invertible, i.e W−1

Definition 1.2. The system (1) is completely stabilizable if for all α ∈ R
there exists a linear bounded operator F ∈ L(H,H) and constant M > 0
such that the semi-group generated by (B1A

−1
1 + CF,D1 u D2) say SF (t),

verifies:

||SF (t)|| ≤Meαt, t ≥ 0.
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ON SADOVESKII FIXED POINT THEOREMS UNDER

THE INTERIOR CONDITION IN TERMS OF WEAK

TOPOLOGY

AHMED BOUDAOUI AND NOURA LAKSACI

Abstract. In this work, the authors focus to give an extension of
Sadoveskii’s fixed point theorem for non-self mappings. These mappings
are satisfying the so-called interior condition. The main assumptions
of the results are formulated in the weak topology settings of Banach
spaces, and Deblasi measure of weak noncompactness.
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Keywords and phrases. Fixed point theorems, λ-set weak contrac-
tive, measure of weak noncompactness, Interior condition, Minkowski
functional.

1. Define the problem

The problems of the existence solutions in functional analysis may be trans-
formed to fixed point problem of the form

N% = % % ∈ K ⊂ E ,
with K has some topological and geometrical hypotheses, E is a Banach
spaces and N is a nonlinear operator. For this, many researchers have been
interested in the case where the Banach space is endowed with its norm
topology; however, others have been focused in the case where the Banach
space equipped under its weak topology setting. The history of fixed point
theory in Banach space equipped with its weak topology was started by
Tychonoff in 1935 as follow:

Theorem 1.1. [6] Let E be a Banach space and let K be a weakly compact,
convex subset of E. If the mapping N : K → K is weakly continuous, then it
has a fixed point.

In 1997, Banaś [1] discussed the case where the operator is not necessary
weakly compact, and gave an analogue result of Theorem1.1. Actually, he
used the concept of λ-set weakly contraction and weakly condensing with
respect to a measure of weak noncompactness.
In some cases, we deal with operators which are continuous and weakly com-
pact. Since neither the continuity implies the weak continuity nor the weak
compactness implies the strong compactness, we can’t use Schauder or Ty-
chonoff’s fixed point theorems, for this reason Latrach et al. [4] introduced
the following condition:

(A1)

{
If (%n)n∈N is a weakly convergent sequence in E , then

(N%n)n∈N has a strongly convergent subsequence in E .
1
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Theorem 1.2. [4] Let K be a nonempty closed convex subset of a Banach
space E. Assume that N : K → K is a continuous map which verifies (A1).
If N is weakly condensing, then there exists % ∈ K such that N% = %.

The authors in [5] established the following nonlinear alternative version
fixed point theorem of Theorem1.2:

Theorem 1.3. [5] Let C be a nonempty, closed convex subset of E and
K ⊆ C an open set (with the topology of C) and let z be an element of
K. Assume N : K̄ −→ C is a continuous weakly-condensing which satisfies
(A1). If N(K̄) is bounded, then either
(a) N has a fixed point, or
(b) there exist a point % ∈ ∂CK (the boundary of K in C ) and λ ∈] 0, 1[
with % = λN(%) + (1− λ)z.

Therefore, in this study we are looking to prove the fixed point result for
non self weakly condensing mapping, fulfills the following so-called Interior
condition. This latter signify that there is δ > 0 such that

N(%) 6= β% for % ∈ Kδ, β > 1 and N(%) /∈ K̄, (IC)
where Kδ = {% ∈ K : dist(%, ∂K) < δ}. This condition was mentioned in the
first time in the following articles [2, 3].
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ON SOME PROPERTIES OF NUCLEAR POLYNOMIALS

ASMA HAMMOU AND AMAR BELACEL

Abstract. Nuclear polynomials between Banach spaces have been stud-
ied since 1983 seminal paper [8] by A. Pietsch. These classes of polyno-
mials have received the attention of many authors. well knew continuous
m- homogeneous polynomials forms ( n ≥ 2) can not always extension,
as always every continuous linear functional defined over a normed space,
these can be extended to any superspace, by the Hahn-Banach Theo-
rem. Extendible polynomials have defined in ([1], [3], [5] ...).
The objective of this note is to study the extensibility of the ideals of
polynomials and to demonstrate that the extensible and liftable nuclear
polynomials are nuclear, and and present some of the results of the
nonlinear theory associated with them.

Keywords. extension property, lifting property, nuclear polynomial.
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ON THE AVERAGE NO-REGRET CONTROL FOR

DISTRIBUTED SYSTEMS WITH INCOMPLETE DATA

MOUNA ABDELLI AND ABDELHAK HAFDALLAH

Abstract. We discuss the averaged control of distributed systems de-
pending on an unknown parameter and with incomplete data following
the notion of averaged no-regret control. We associate with the averaged
no-regret control a sequence of averaged low-regret controls defined by
a quadratic perturbation. In the first part, we prove that the perturbed
system corresponds to a sequence of standard averaged control prob-
lems and converges to the averged no-regret control for which we obtain
a singular optimality system. We give also some applications. In the
second part, we show how the method can be extended to the evolution
case. Equations of parabolic type, Petrowsky type, or hyperbolic type
are considered.
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Keywords and phrases. averaged No-regret control, averaged low-
regret control, optimality condition, singular optimality system.
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ON THE EXISTENCE OF A WEAK SOLUTION FOR A

CLASS OF NONLOCAL ELLIPTIC PROBLEMS

ELMEHDI ZAOUCHE

Abstract. We prove the existence of a weak solution for a class of
nonlocal heterogeneous elliptic problems using the Tychonoff fixed point
theorem.
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Keywords and phrases. Tychonoff fixed point theorem, nonlocal het-
erogeneous elliptic problems, weak solution; existence.

1. Definition of the problem

Let Ω be a bounded domain in Rn (n ≥ 1). We consider the following
weak formulation of nonlocal heterogeneous elliptic problems (see [1]):

(1)





Find u ∈ H1
0 (Ω) such that :

∫

Ω
a(x)∇u · ∇ξ dx =

∫

Ω
(g(x, u))αξ dx

(∫

Ω
g(x, u) dx

)β

∀ξ ∈ H1
0 (Ω),

where a(x) = (aij(x))ij is an n×nmatrix function defined almost everywhere
on Ω satisfying for two positive constants λ, Λ,

∀ξ ∈ Rn : λ|ξ|2 ≤ a(x)ξ · ξ a.e. x ∈ Ω,

∀ξ ∈ Rn : |a(x)ξ| ≤ Λ|ξ| a.e. x ∈ Ω,

g : Ω×R → R is a function such that for all t ∈ R, x 7→ g(x, t) is measurable,
t 7→ g(x, t) is continuous for a.e. x ∈ Ω and for some function h ∈ L1(Ω),

∀t ∈ R, a.e. x ∈ Ω, 0 < g(x, t) ≤ h(x)

and α, β satisfy one of the two following assumptions,

0 ≤ α ≤ 1

2
and β ≤ α;

α >
1

2
, β ≤ 1

2
with h(x) ≤ 1 a.e. x ∈ Ω.

Under the hypotheses mentioned above on a, g, α and β, we prove an ex-
istence theorem of a weak solution for the problem (1) using the Tychonoff
fixed point theorem ([2]).

1
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ON A FRACTIONAL p-LAPLACIAN PROBLEM WITH

DISCONTINUOUS NONLINEARITIES.

HANAÂ ACHOURA AND SABRI BENSIDB

Abstract. In this paper, we are concerned by the study of a discontin-
uous elliptic problem involving a fractional p-Laplacian arising in differ-
ent contexts. Under suitable conditions, we provide the existence and
multiplicity result via the nonsmooth critical point theory.
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Keywords and phrases. Discontinuous nonlinearities , free bound-
aries, fractional p-Laplacian, critical point, variational method.

1. Define the problem

This paper provides a generalization of the fractional elliptic problem,
which various authors have recently studied. For a brief panorama of works
dealing with this type of problem, see [1–4,6,7,10]. In particular, we extend
the author’s results in [5] for the fractional p-Laplacian with sign-changing
nonlinearities and n discontinuities. More precisely, we are concerned about
studying the existence and multiplicity of solutions to the following problem.

(1)





(−∆)spu = m(x)

n∑

i=1

H(u− µi) in Ω

u = 0 on RN \ Ω,

where Ω is a bounded domain in RN , p ∈ (1,∞), s ∈ (0, 1), (N > ps) with
smooth boundary ∂Ω, m is a sign-changing function, H is the Heaviside
function, µi > 0 is a real parameter verifying µ1 < µ2 < · · · < µn, (n ∈ N∗)
and (−∆)sp is the fractional p-Laplacian which up to normalization functions
may be defined as

(−∆)spu(x) = 2 lim
ε→0

∫

RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
dy, x ∈ RN ,

where Bε(x) is the open ε-ball of centre x and radius ε. Note that problem
(1) can be regarded as a free boundary problem with unknown regions to
be characterized, reduced to a boundary value problem.

In the presence of discontinuous nonlinearities, our problem (1) has a vari-
ational nature, and its eventual solutions, which solve it in the multivalued
sense, can be constructed as the critical points of the following associated
Euler-Lagrange functional

E(u) =
1

p

∫

R2N

|u(x)− u(y)|p
|x− y|N+sp

dxdy −
∫

Ω
m(x)G(u(x)) dx,
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where G : [0,+∞[→ R is G(t) =
n∑

i=1

∫ t

0
H(s− µi) ds.

We remark that the functional E is not Fréchet differentiable, which
means that the classical variational methods are not applicable. There-
fore, our main objective is setting appropriate assumptions on the functions
m and G and using the Chang theory [8] for nondifferentiable functions due
to Clarke [9], and we prove that the energy functional E is only locally Lips-
chitz continuous. Hence, by the nonsmooth mountain pass theorem version,
we prove the existence of solutions to the problem (1).
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ON AN EVOLUTION PROBLEM INVOLVING

FRACTIONAL DIFFERENTIAL EQUATIONS

SOUMIA SAÏDI

Abstract. We deal in the present work with a system coupled by a
differential inclusion involving subdifferential operator and a fractional
differential equation.

2010 Mathematics Subject Classification. 34A60, 49J52, 49J53

Keywords and phrases. Differential inclusion, subdifferential opera-
tor, fractional derivative.

1. Main result

Differential equations of fractional order have recently been proved valu-
able tools in modeling many phenomena in various fields of science and
engineering. There are many applications to problems in viscoelasticity,
electrochemistry, control, porous media, electromagnetics, etc. There has
been a significant theoretical development in fractional differential equa-
tions in recent years. In particular, the existence of solutions of boundary
value problems and boundary conditions for implicit fractional differential
equations and integral equations with fractional derivatives constitutes an
attractive subject of research.

We investigate here a system involving a differential inclusion and a dif-
ferential equation with fractional derivatives. In our development, we use
an existence and uniqueness result concerning first-order evolution problems
with single-valued perturbations to state our main theorem.
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ON GENERAL BITSADZE-SAMARSKII PROBLEMS OF

ELLIPTIC TYPE IN Lp CASES

HAMDI BRAHIM, MAINGOT STÉPHANE, AND MEDEGHRI AHMED

Abstract. This work is devoted to the study of General Bitsadze-
Samarskii Problems of elliptic type in the framework of UMD Banach
spaces. Here, we obtain some results about existence, uniqueness and
regularity of the solution. We define two types of solutions (strict and
semi-strict solutions) and we give necessary and sufficient conditions on
the data to obtain these results.

2010 Mathematics Subject Classification. 34G10, 35J05, 35J15,
35J25, 35J99.
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semigroups, Bounded imaginary powers of operators, UMD spaces.

1. Position of the problem

In this work, we study a non local elliptic problem of Bitsadze-Samarskii
type in the framework of Lp spaces.
Let x0 ∈ [0, 1[, we consider:

(P1) :





−u′′(x) +Au(x) = f(x), a.e. x ∈]0, 1[

u(0) = u0,

u(1)−Hu′(x0) = u1,x0 ,

where f ∈ Lp(0, 1;X), 1 < p < +∞, X is a complex Banach space, u0 and
u1,x0 are elements of X. A and H are two closed linear operators in X with
domains D(A) and D(H), respectively.

Our main goal is to give (under some hypotheses) necessary and sufficient
conditions on the data to obtain:

- Semi-strict solution, i.e. u verify (P1) and:

u ∈W 2,p(0, 1− ε;X) ∩ Lp(0, 1− ε;D(A)) et u′ ∈ Lp(0, 1;X).

- Strict solution, i.e. u verify (P1) and:

u ∈W 2,p(0, 1;X) ∩ Lp(0, 1;D(A)).

The method is based essentially on the construction of a representation of
the solution, using the semigroupes theory, fractional power of operators,
the interpolation spaces and sum operators theory.

We give finally, some resultats concerned the existence, unicity and regular-
ity of the solution of this problem. See Hamdi et al. [1].
Our work completes the one studied by Hammou et al. [2], where the authors
considered the same problem (P1), for x0 = 0.

1
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ON SEMICLASSICAL FOURIER INTEGRAL OPERATORS,

SCHRÖDINGER PROPAGATORS AND COHERENT

STATES

OUISSAM ELONG

Abstract. We introduce a class of semiclassical Fourier integral oper-
ators using Fourier-Bargmann transform. We will show that the propa-
gator defined by the solution of the time dependent Schrdinger equation
with subquadratic Hamiltonian H(t) is a semiclassical Fourier integral
operator of order 0 associated to the Hamilton flow generated by the
classical Hamiltonian H(t).
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Keywords and phrases. Semiclassical Fourier integral operators, time
dependent Schrdinger equation, Coherent states, Fourier-Bargmann trans-
form.

1. Define the problem

The time-dependent Schrdinger equation is a linear partial differential
equation

(1) ih̄∂tψ(t) = Ĥ(t)ψ(t), ψ(t = t0) = ψ0,

where ψ0 is an initial state, Ĥ(t) is the quantum Hamiltonian depending on
time t, defined as a continuous family of self-adjoint operators in the Hilbert
space L2(Rn) and ~ > 0 is the Plank constant.

In this talk we prove that the parametrix of (1) constructed in [2] and
its remainder operator are semiclassical FIO of order 0. This work, is the
semiclassical version of results obtained in [3] for ~ = 1. Here we control the
singular limit ~ ↘ 0.
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On some nonlinear p(x)-elliptic
problems with convection term

Hadjira LALILI*

March 7, 2021

Abstract
In this work, we deal with elliptic systems of the form:

(P)

8<:
��p(x)u = f(x; u;ru) in
;

u = 0 on @
:

where �p(:)u := div
�
jrujp(:)�2ru

�
is the so-called p(:)-Laplacian oper-

ator, 
 be a bounded domain in RN with smooth boundary @
. Under
some conditions growth on the nonlinearities, we search solutions for the
problem (P) using Fredholm-type result for a couple of nonlinear opera-
tors [3].

Key words: p(x)-Laplacian; generalized Lebesgue-Sobolev spaces; surjec-
tivity theorem.
Mathematics Subject Classi�cation: 47H05, 47H10.
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 Title : On the existence of a shape derivative formula in the Bruun-Minkowski theory 
 Abstract : In this work, we consider again the shape derivative formula [1] for a volume cost functional 

which we studied in preceding papers where we used the Minkowski deformation and the support functions 

in the convex setting. Here, we extend it to some non convex domains, namely the star-shaped ones. The 

formula also happens to be an extension of a well known formula in the Brunn-Minkowski theory. Finally, 

we illustrate the formula by applying it to the computation of the shape derivative for a shape optimization 

problem and by giving an algorithm based on the gradient method. 
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ON THE NUMERICAL RANGE OF M ISOMETRY AND
QUASI-ISOMETRY OPERATOR

ZAIZ KHAOULA1 MANSOUR ABDELOUAHAB2

Abstract. Let B(H) be the algebra of all bounded linear operators on a
complex Hilbert space H. For all A ∈ B(H), we define the numerical range
W (A) as collection of all complex numbers of the form 〈Ax, x〉 where x ∈ H.
More precisely

W (A) = {〈Ax, x〉 : x ∈ H, ‖x‖ = 1}.
In this work, we study some topological and analytic properties of numerical
range of m− isometry operators and quasi-isometry operators, where A is an
m−isometry if and only if

m∑

k=0

(−1)k
(

m

k

)∥∥∥Tkh
∥∥∥
2
= 0

for all h ∈ H, and A is a quasi-isometry if A∗2A2 = A∗A.
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On the positive Cohen p-nuclear m-linear
operators

Amar Bougoutaia ∗ 1, Amar Belacel ∗

2

1 university of Laghouat – Algeria
2 university of Laghouat – Algeria

In this talk, we introduce and study the concept of positive Cohen p-nuclear multilinear
operators between Banach lattice spaces. We prove a natural analog to the Pietsch domination
theorem for this class.
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ON THE SPECTRAL BOUNDARY VALUE PROBLEMS

AND BOUNDARY APPROXIMATE CONTROLLABILITY

OF LINEAR SYSTEMS

NASSIMA KHALDI

Abstract. The main subject of this paper is the study of a general
spectral boundary value problems with right invertible (resp. left in-
vertible) operators and corresponding initial boundary operators. The
obtained results are used to d escribe the approximate boundary con-
trollability of linear systems in abstract operator-theoretic setting.

2000 Mathematics Subject Classification. Primary 30E25 93B28
93B05; Secondary 47A50 93C25

Keywords and phrases. Spectral boundary value problems, Right
invertible operators, Left invertible operators, Initial boundary operator,
Control linear systems, Approximate controllability.

1. Define the problem

Let X, E be a complex Banach spaces. This work consists of two parts.
In the first part, we develop the following spectral boundary value problems:

(1)

{
Dx = Ax+ f

Γx = ϕ

where D : D(D) ⊂ X → X , with dimN (D) 6= 0, be right invertible with a
right inverse R, Γ be a boundary operator of D corresponding to R ∈ RD

where RD is the set of right inverse of D, and A be a linear operator such
that D(D) ⊂ D(A). And f ∈ X , ϕ ∈ E and λ ∈ C is spectral parameter.
We prove the existence and uniqueness the solution of the problem (1).
In the second part of the paper, we develop a theoretical framework for the
concepts of controllability. Recall that, in infinite dimensional spaces, exact
controllability is not always realized. We give necessary and sufficient con-
ditions for an abstract control linear system to be boundary approximately
reachable, boundary exactly controllable and boundary approximately con-
trollable. Finally, by a typical example, we show that the concept and results
of the boundary approximate reachability are completely coincide with the
approximate reachability of the evolution linear control systems in infinite
dimensional spaces.
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ON THE STUDY OF A BOUNDARY VALUE PROBLEM
FOR THE BIHARMONIC EQUATION SET IN A

IINGULAR DOMAIN

B. CHAOUCHI

Abstract. In this work, we will investigate a boundary value problem
for biharmonic equation set in a ingular domain 
 containing a cuspidal
point. Existence and maximal regularity results are obtained for the
classical solutions by using the fractional powers of linear operators.

2010 Mathematics Subject Classification. 34G10, 34K10, 12H2O,
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Keywords and phrases. Fractional powers of linear operators; ana-
lytic semigroup, Operational di¤erential equation of elliptic type, Cus-
pidal point

1. STATEMENT OF THE PROBLEM

It is important to note that the study of boundary value problems set
in singular domains remains an interesting subject of mathematical analy-
sis. This kind of problems are often encountered in the modeling of many
physical phenomena. For this reason, it can be seen that during the last
decades numerous authors have been interested in the study of such prob-
lems. We can cite for instance [1], [7], [10], [11], [12], [13], [14], [15] and the
references therein. Among these problems, a special attention is given to
the biharmonic equation. In fact, it is well known that several mathematical
models of problems of the plane deformation of the elasticity theory are re-
duced to the study of the biharmonic equation with some special boundary
conditions.
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PERIODICITY OF THE SOLUTIONS OF GENERAL

SYSTEM OF RATIONAL DIFFERENCE EQUATIONS

RELATED TO FIBONACCI NUMBERS.

IBTISSAM TALHA AND SALIM BADIDJA

Abstract. In this work we deal with the periodicity of solutions of the
following system rational of difference equations




xn+1 =
yn(xn−3+yn−4)

yn−4+xn−3−yn
,

yn+1 =
xn−2(xn−2+yn−3)

2xn−2+yn−3
,

where the initial conditions of the negative index terms
x−3, x−2, x−1, x0, y−4, y−3, y−2, y−1, y0 are nonzero real numbers and

n = 0, 1, 2, ..., such that

y−3

x−2
,
y−2

x−1
,
y−1

x0
/∈
{
−F2n+3

F2n+2
, n = 0, 1, 2, ...

}
,

and
x−3 + y−4

y0
/∈ {1} ∪

{
F2n

F2n+2
, n = 0, 1, 2, ...

}
.
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POSITIVE SOLUTION OF A NONLINEAR SINGULAR

TWO POINT BOUNDARY VALUE PROBLEM

CHAHIRA ATTIA AND SALIMA MECHROUK

Abstract. In this paper, we study the existence of positive solutions
of a nonlinear singular two point Boundary value problem for a class of
second order differential equations by using Krasnoselskii’s fixed point
theorem on cones.

2010 Mathematics Subject Classification. 47H10, 47H11, 34B15.

Keywords and phrases. Cones, singular problem , Krasnoselskii’s
fixed point theory, existence, positive solution, boundary value prob-
lems.

1. Define the problem

This work is concerned with the existence of positive solutions of the fol-
lowing nonlinear second-order singular two point Boundary value problem:

(1)

{ −u′′(t) = g(t) f(t, u(t)), t ∈ (0, 1),

u′ (0) = u(1) = 0

where g : (0, 1) → R+ is a measurable function may be singular at t = 0
and/or 1 and f(t, u) may also have singularity at u = 0. Moreover, The
functions g and f satisfy

• (H1) 0 <
∫ 1
0 G(s, s)g(s)ds < +∞

• (H2) f ∈ C((0, 1)× (0,+∞),R+)

We mean, by a positive solution to problem (1) , a function u ∈ C1([0, 1],R)
and u(t0) > 0 for some t0 > 0 satisfying all equation in (1). We shall as-
sume some asymptotic properties of f . In particular, assume there exist
nonnegative constants in the extended reals,f0, f∞, such that

f0 = lim
u→0+

f(t, u)

u
, f∞ = lim

u→+∞
f(t, u)

u

We note that the case (f0 = 0, f∞ =∞) corresponds to the superlinear and
(f0 =∞, f∞ = 0) corresponds to the sublinear case. we shall also apply the
Krasnoselskii’s fixed point theorem on cones on which there exist positive
solutions of the BVP (1).
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PRODUCTS AND COMMUTATIVITY OF DUAL TOEPLITZ

OPERATORS ON THE HILBERTIAN HARDY SPACE OF

THE POLYDISK

LAKHDAR BENAISSA

Abstract. In this paper, we study the commutativity and products of
dual Toeplitz operators on the Hardy space of the polydisk, we obtain
similar conditions of BrownHalmos Theorem for Hardy-Dual Toeplitz
operators, and establish their main algebraic properties using an auxil-
iary transformation of operators
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Keywords and phrases. Brown-Halmos, dual Toeplitz operator, Han-
kel operator, Hardy space.

1. Define the problem

We introduce dual Toeplitz operators on the orthogonal complement of
the Hardy space of the polydisk and establish their main algebraic properties
using an auxiliary transformation of operators. For a detailed account on
this topic we refer to [10, 5]. This mysterious transformation gives rise to an
interesting characterization of dual Toeplitz operators in terms of operator
equations that is closely related to the intertwining relations. Furthermore,
we are able to characterize commuting dual Toeplitz operators as well as
normal ones. Moreover, we investigate products of dual Toeplitz operators.
More precisely, we establish Brown-Halmos type theorems and exploit them
to characterize the zero divisors among dual Toeplitz operators as well as
symbols giving rise to isometric, idempotent and unitary dual Toeplitz op-
erators.
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Positive solutions for second order boundary value problems with
dependence on the first order derivative

Mohamed El Mahdi Hacini, Ahmed Lakmeche
Laboratory of Biomathematics, Department of Mathematics,

P.B. 89, Sidi-Bel-Abbes, 22000, Algeria

Abstract:
In this Work, We study the existence of positive solutions for nonlocal boundary value problems for

functional differential equations

u′′(t) + f(t, ut, u
′(t)) = 0, 0 ≤ t ≤ 1,

u(t) = φ(t), −τ ≤ t ≤ 0,
u(1) = αu(η) + βu′(η)

where φ ∈ C, f : [0, 1]× C × R→ R is continuos functions and η ∈ (0, 1),
keywords: Positive solution, functional differential equation, nonlocal boundary value problem, alter-
native of Leray-Schauder fixed point theorem.
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Reconstruction of an unknown time-dependent source

parameter in a time-fractional Sobolev-type problem from

overdetermination condition.

Abdeldjalil Chattouh, Khaled Saoudi.

Let Ω ⊂ Rd, d ≥ 1 is a bounded domain with a Lipschitz boundary Γ and T > 0 is a final
time. Consider the following time-fractional Sobolev-type equation

∂αt u(x, t)− ∂αt ∆u(x, t)−∆u(x, t) = h(t)f(x, t), x ∈ Ω, t ∈ (0, T ). (1)

where ∂αt stands for Caputo fractional derivative of order α in the time variable given by

∂αt u(x, t) =
1

Γ(1− α)

∫ t

0
(t− τ)−α∂tu(x, τ)dτ.

Note that the equation (1) is a classical diffusion and wave equation for α = 1 and β = 2,
respectively. We associate to the equation (1) the following initial and boundary conditions

u(x, 0) = u0(x), x ∈ Ω,

−∇u(x, t) · ν = g(x, t), x ∈ Γ, t ∈ (0, T ).
(2)

where the initial data u0 and the source term g are given smooth functions, and the symbol
ν stands for the outer normal vector assigned to the boundary Γ.
Define the Riemann–Liouville kernel as

g1−α(t) =
t1−α

Γ(1− α)
, t > 0, 0 < α < 1.

and the convolution on the positive half-line, i.e.

(k ∗ v)(t) =

∫ t

0
k(t− τ)v(τ)dτ.

Thus, the equation (1) can be written in the following equivalent form

(g1−α ∗ ∂tu(x))(t)− (g1−α ∗ ∂t∆u(x))(t)−∆u(x, t) = h(t)f(x, t), x ∈ Ω, t ∈ (0, T ). (3)

The Inverse source problem studied in this contribution consists of finding a couple
(u(x, t), h(t)) satisfying (1), (2) and the following overdetermination condition:

∫

Ω
u(x, t)ω(x)dx = m(t), t ∈ [0, T ]. (4)

where ω is a space-dependent function. Usually ω is chosen to be a function with compact
support in Ω, and then this type of measurement represents the weighted average of u on a
subdomain of Ω.

Multiplying (??) by the function ω, and integrating over the domain Ω, applying the
Green theorem and using (4), we obtain

(g1−α ∗m′)(t) + (∇u(t),∇ω) = h(t)(f, ω)− (g(t), ω)Γ, 0 < t ≤ T. (5)
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Assume that (f, w) 6= 0, than

h(t) =
(g1−α ∗m′)(t) + (∇u(t),∇ω) + (g(t), ω)Γ

(f, ω)
, 0 < t ≤ T. (6)

Similarly multiplying (1) by a test function φ ∈ H1(Ω) and using Green formula, we obtain
the variational formulation of (3) and (2), which reads as

((g1−α ∗ ∂tu)(t), φ) + (∇u(t),∇φ) = h(t)(f, φ)− (g(t), φ)Γ, 0 < t ≤ T. (7)

for any φ ∈ H1(Ω) and u(0) = u0. The relations (5) and (7) represent the variational
formulation of the inverse problem (1), (2) and (4).

Direct and inverse problems of parabolic type containing a source parameter and/or an
integral over (a subset of) the spatial domain of a function of the unknown solution arise
in the to modelling various physical phenomena. The integral may appear in the boundary
conditions and/or the governing partial differential equation itself. These problems have many
applications in fields of science and engineering, e.g. in thermoelasticity and in fluid flow, in
heat transfer processes, in control theory, in chemical diffusion and in vibration problems.

Identification of an unknown source is an activate and interesting topic in the theory
of inverse problems. There are many papers devoted to the study of inverse problems for
parabolic and hyperbolic equations. The case when the source depends only on the space
variable, we refer to [1,2,3], and for the solely time-dependent source reader can see [4,5,6].
An unknown time-dependent source function h(t) appears in paper [7], that deals with an
inverse problems for time-fractional wave equation along with mixed boundary conditions.
In that article, p(t) is recovered from the boundary measurement overdetermination (4).

The main objective of this work is to establish the uniqueness and global existence of
the weak solution of the inverse problem (2)-(1). Following the same idea as in [] and [?]
we employ the Rothe method, which is a very powerful tool approaching problem complexly.
We prove the existence of solution in a constructive way, which enables us also to propose an
algorithm to compute an approximate solution of the inverse problem.

Our main result in this contribution lies in the following theorem
Theorem Let f ∈ L2(Ω), u0, ω ∈ H1(Ω),

∫
Ω fω 6= 0,m ∈ C2([0, T ]). Suppose that

(∇u0,∇φ) = h0(f, φ)− (g0, φ)Γ,∀φH1(Ω),

Then there exists a unique solution (u, h) to the (5) and (7) obeying that u ∈ C([0, T ];H1(Ω))
with ut ∈ L∞((0, T );L2(Ω)) ∩ C([0, T ];L2(Ω)) and h ∈ C([0, T ]).
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STABILITY WITH RESPECT TO PART OF THE

VARIABLES OF NONLINEAR CAPUTO FRACTIONAL

DIFFERENTIAL EQUATIONS

ABDELLATIF BEN MAKHLOUF

Abstract. In this work, the stability with respect to part of the vari-
ables of nonlinear Caputo fractional differential equations is studied. A
sufficient conditions of stability, uniform stability, Mittag Leffler stabil-
ity and asymptotic uniform stability of this type are obtained within the
method of Lyapunov-like function.
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Mittag-Leffler function.
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STRONG SOLUTION FOR HIGH-ORDER CAPUTO TIME

FRACTIONAL PROBLEM WITH BOUNDARY INTEGRAL

CONDITIONS

KARIM AGGOUN AND AHCENE MERAD

Abstract. The aim of this paper is to work out the solvability of a class
of Caputo time fractional problems with boundary integral conditions.
A generalized formula of integration is demonstrated and applied to
establish the a priori estimate of the solution, then we prove the existence
which is based on the range density of the operator associated with the
problem.

2010 Mathematics Subject Classification. 35R11, 35D35.

Keywords and phrases.Time fractional problem, a priori estimate,
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1. Define the problem

Let Q be a rectangle defined by Q = (0, 1) × (0, T ) and considering the
fractional equation

(1) ∂α0tu+ (−1)m
∂m

∂xm

(
a (x, t)

∂mu

∂xm

)
= f (x, t)

where m ≥ 1 and ∂α0t denotes the Caputo time fractional derivative of
order 0 < α < 1 with lower bound 0, subject to the initial condition

(2) u (x, 0) = ϕ (x) , x ∈ (0, 1)

and the boundary integral conditions

(3)

1∫

0

xku (x, t) dx = 0, k = 0, 2m− 1.
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SOLUTIONS FORMULAS FOR SOME GENERAL SYSTEMS

OF DIFFERENCE EQUATIONS

Y. AKROUR, M. KARA, N. TOUAFEK, AND Y. YAZLIK

Abstract. In this work, we give explicit formulas of the solutions of
the two general systems of non-linear difference equations

xn+1 = f−1 (ag(yn) + bf(xn−1) + cg(yn−2) + df(xn−3)) ,

yn+1 = g−1 (af(xn) + bg(yn−1) + cf(xn−2) + dg(yn−3)) ,

and

xn+1 = f−1

(
a +

b

g(yn)
+

c

g(yn)f(xn−1)
+

d

g(yn)f(xn−1)g(yn−2)

)
,

yn+1 = g−1

(
a +

b

f(xn)
+

c

f(xn)g(yn−1)
+

d

f(xn)g(yn−1)f(xn−2)

)
,

where n ∈ N0, f, g : D −→ R are a “1− 1” continuous functions on D ⊆
R, the initial values x−i, y−i, i = 0, 1, 2, 3 are arbitrary real numbers
in D and the parameters a, b, c and d are arbitrary real numbers. Our
results considerably extend some existing results in the literature.

2010 Mathematics Subject Classification. 39A10.

Keywords and phrases. Systems of difference equations, form of
solutions, stability of equilibrium points.

1. Define the problem

Difference equations are used to describes real discrete models in various
branches of modern sciences such as, biology, economy, control theory. This
explain why a big number of papers is devoted to this subject, see for ex-
ample ([1] - [21]). It is clear that if we want to understand our models, we
need to know the behavior of the solutions of the equations of the models,
and this fact will be possible if we can solve in closed form these equations.
One can find in the literature a lot of works on difference equations where
explicit formulas of the solutions are given, see for instance [1], [2], [5], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [20], [21]. Such type of
difference equations and systems is called solvable difference equations. In
the present work, we continue our interest in solvable difference equations,
more precisely, we will solve the following two general systems of difference
equations

xn+1 = f−1 (ag(yn) + bf(xn−1) + cg(yn−2) + df(xn−3)) ,

yn+1 = g−1 (af(xn) + bg(yn−1) + cf(xn−2) + dg(yn−3)) ,
1
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and

xn+1 = f−1

(
a+

b

g(yn)
+

c

g(yn)f(xn−1)
+

d

g(yn)f(xn−1)g(yn−2)

)
,

yn+1 = g−1

(
a+

b

f(xn)
+

c

f(xn)g(yn−1)
+

d

f(xn)g(yn−1)f(xn−2)

)
,

where n ∈ N0, f, g : D −→ R are one to one (“1− 1”) continuous functions
on D ⊆ R, the initial values x−i, y−i, i = 0, 1, 2, 3 are arbitrary real numbers
in D and the parameters a, b, c and d are arbitrary real numbers.

In our study, we are inspired and motivated by the ideas, the equations
and the systems of some recent published papers. The papers, [1], [2] and
especially [15] are our main motivation in the present work. The obtained
results considerably generalize some existing results in the literature, see [1],
[2], [3], [4], [5], [11], [12], [13], [14], [15], [16], [17], [18], [20].
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SOLUTIONS OF THE OPERATOR EQUATIONS Tn = T ∗T

SOUHEYB DEHIMI

Abstract. In this paper, we study equations of the type T ∗T = T n

where T is a linear operator (not necessary bounded) and n ∈ N and see
when they yield T = T ∗.

2010 Mathematics Subject Classification. Primary 47A62. Sec-
ondary 47B20, 47B25.

Keywords and phrases. Operators equation, Self-adjoint operators.
Quasinormal operators. Spectrum.

1. Introduction

It was proved in [10] that if T ∗T = T 2 then T must be self-adjoint (T =
T ∗), where T ∈ B(H) and H is a finite dimensional space. Then, the authors
in [7] obtained positive results in both the finite and the infinite dimensional
settings. In this paper, we deal with more general equations of the type

T ∗T = Tn, n ∈ N,

where T is closed linear operator. We also reprove some known results in
[7] by using the proprieties of posinormal operators.

2. Main results

Definition 2.1. Let T ∈ B(H). If T ∗T = Tn for some n ∈ N such that
n ≥ 3, then T is called a generalized projection.

This class of operators was first defined by the others in [2]. Note that,
T ∗T = Tn does not always gives the self-adjointness of T ∈ B(H) even
when dim H < ∞. This new class of operators lies therefore just between
orthogonal projections and normal operators.

The next theorem was proved in [2], which might considered as a charac-
terization of the results obtained in [10].
Theorem 2.2. Let H be a complex Hilbert space and let T ∈ B(H) be a
bounded operator and let n ∈ N, n ≥ 2. Then T is a solution of the equality
(1) Tn = T ∗T

if and only if
• T = T ∗ (if n = 2),
• there is a family P1, . . . , Pn ∈ B(H) of orthogonal projections such

that PjPk = 0, (j ̸= k) such that

(2) T =
n∑

k=1

e
2kπi

n Pk

(if n ≥ 3). In this case, we also have ∥T∥ = 1 (when A ̸= 0).
1
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This new class of operators lies therefore just between orthogonal projec-
tions and normal operators.

As an immediate consequence, we have:
Proposition 2.3. If B,C ∈ B(H) are such that C∗C = BC and B∗B =
CB, then B = C∗.

Proof. Let T ∈ B(H ⊕ H) be defined as T =

(
0 B
C 0

)
. Then

T ∗T =

(
C∗C 0

0 B∗B

)
and T 2 =

(
BC 0
0 CB

)
.

By hypothesis, we ought to have T ∗T = T 2, whereby T becomes self-adjoint,
in which case, B = C∗, as wished. □
Proposition 2.4. Let T ∈ B(H) be such that T ∗T 2 = T ∗TT ∗. Then T is
self-adjoint.

Another consequence is the following:
Proposition 2.5. Let T ∈ B(H) be satisfying

T ∗T = T ∗2T 2 = T 3.

Then there exist three orthogonal projections, P0, P1, P2 ∈ B(H) which are
pairwise orthogonal such that

(3) T = P0 + e
2πi
3 P1 + e

4πi
3 P2.

Proof. Let T ∈ B(H) and define B ∈ B(H ⊕ H) by:

B =

(
0 T
T 2 0

)
.

Then B2 =

(
T 3 0
0 T 3

)
. Since B∗B =

(
T ∗2T 2 0

0 T ∗T

)
, by hypothesis

we must therefore have B∗B = B2. Hence, B is self-adjoint by Theorem
2.2. This just means that T = T ∗2. Consequently, T is obviously normal
and

φ(z) = z − z2, z ∈ C
vanishes on σ(T ). From that it is readily seen that if λ ∈ σ(T ) then either
λ = 0 or λ is a solution of λ3 = 1. Whence, we conclude that

σ(T ) ⊆ {0} ∪ {e
2kπi

3 , k = 0, 1, 2}.

From the spectral theorem it follows that T can be written as (3) for some
orthogonal projections P0, P1, P2 with pairwise orthogonal ranges. The
proof is complete. □

Now, we deal with the equation T ∗T = Tn for a closed and densely defined
T .

In fact, If T is a linear operator, then T ∗T = T 2 does not necessarily
give T = T ∗. The most trivial example is to consider a densely defined and
unclosed operator T (hence such T cannot be self-adjoint) such that

D(T 2) = D(T ∗T ) = {0}
. Then T ∗T = T 2 is trivially satisfied.
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Theorem 2.6. Let H be a complex Hilbert space and let T be a closed
and densely defined (unbounded) operator verifying T ∗T = T 2. Then T is
self-adjoint on its domain D(T ) ⊂ H.

Proof. Plainly,
T ∗T = T 2 =⇒ TT ∗T = T 3 =⇒ TT ∗T = T 2T =⇒ TT ∗T = T ∗TT,

showing the quasinormality of T (as defined in [3], say). By consulting [4]
and [6], we know that quasinormal operators are hyponormal. That is, T is
hyponormal.

According to the proof of Theorem 8 in [1], closed hyponormal operators
having a real spectrum are automatically self-adjoint. Once that’s known
and in order that T be self-adjoint, it suffices therefore to show the realness
of its spectrum given that T is already closed.

So, let λ ∈ σ(T ). Since T is closed, we have by invoking a spectral
mapping theorem (e.g. Theorem 2.15 in [5]) that λ2 ≥ 0 for T ∗T is self-
adjoint and positive. Now, this forces λ to be real. Accordingly, σ(T ) ⊂ R,
as needed. □

As a consequences of the previous theorem, we have:

Proposition 2.7. Let B,C be two densely defined and closed operators
obeying C∗C = BC and B∗B = CB. Then B = C∗.

Proposition 2.8. Let T be a closed and densely defined (unbounded) oper-
ator such that T ∗T = −T 2. Then T is skew-adjoint.

Finally, we show the impossibility of the equations T ∗T = Tn (with n ≥ 3)
for unbounded closed operators.

Theorem 2.9. Let T be a closed and densely defined operator with a domain
D(A) ⊂ H and let n ∈ N be such that n ≥ 3. If T ∗T = Tn, then T ∈ B(H)
(and so T can be written in the form (2)).

Proof. Let T be a closed and densely defined operator which obeys T ∗T =
Tn where n ≥ 3. Then (as in the bounded case)

T ∗T = Tn =⇒ TT ∗T = Tn+1 =⇒ TT ∗T = TnT =⇒ TT ∗T = T ∗TT,

showing the quasinormality of T . It then follows that T is hyponormal and
so D(T ) ⊂ D(T ∗). Hence

D
(
T 2

)
⊆ D (T ∗T ) = D (Tn)

or merely
D

(
T 2

)
= D (Tn) .

Also
D

(
T 3

)
⊆ D (T ∗TT ) = D

(
Tn+1

)

so that
D

(
T 2

)
= D

(
Tn+1

)
.

Now, since T is closed, it follows that T 2 is closed as it is already quasinormal
(see e.g. Proposition 5.2 in [8]). Also, the quasinormality of T yields that
of T 2 (by Corollary 3.8 in [3], say) and so T 2 is hyponormal. Therefore,

D
(
T 2

)
⊆ D[

(
T 2

)∗
]
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and
D

(
T 2

)
= D

(
T 4

)
.

In the end, according to Corollary 2.2 in [9], it follows that T 2 is every-
where bounded on H. Hence D(T ) = H and so the Closed Graph Theorem
intervenes now to make T ∈ B(H). □

Declaration. This work is inspired by the original paper ”On the oper-
ator equations An = A∗A”.
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SOME FIXED POINT RESULTS FOR KHAN MAPPINGS

SAMI ATAILIA, NAJEH REDJEL, AND ABDELKADER DEHICI

Abstract. We present some fixed point results for a class of mappings
called Khan mappings which satisfy certain rational inequality. Further-
more, we establish the link that connects quasi-normal-structure and the
fixed point property for this class when they are defined on weakly com-
pact convex subsets of Banach spaces.
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1. Define the problem

We focus our study on the existence of fixed points for Khan self-mappings
(involving rational expression) which are defined in complete metric spaces.
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SOME COUPLE FIXED POINT THEOREMS IN METRIC

SPACE ENDOWED WITH GRAPH

A. BOUDAOUI AND K. MEBARKI

Abstract. In this presentation, we will talk about the sufficient condi-
tions for the existence of couple fixed point for such contractive mappings
in mertic space endowed with a directed graph. Our results represent
a generalizations of the recent couple fixed point theorems given by
Vasile Berinde [2]. We apply the proven couple fixed point results on
the existence and the uniqueness of a continuous solution for a system
of fractional differential equation.
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1. Define the problem

The study of coupled fixed point theorems remain a well motivated area
of research in fixed point theory due to their applications in a wide variety
of problems. Bhaskar and Lakshmikantham [3], Vasile Berinde [2], Van
Luong and Thuan [12] presented some new results for coupled fixed point
in partially ordered metric space and used them to prove the existence and
uniqueness of some differential equations.

In 2008, Jachymski [8] gave a more general unified version of the re-
sults obtained in metric spaces endowed with a partial order by considering
graphs instead of a partial order. In this direction, Bojor [4], Boonsri and
Saejung[5], Chifu and Petruşel [6] presente some fixed point theorems in
metric space endowed with graph.

Very recently, Alfuraidan and Khamsi [1], Chifu and Petrusel [7] have
developed have developed some coupled fixed point results in metric space
endowed with a directed graph.

Following the same line, in this manuscript we give a generalization of
Vasile Berinde’s theorem in metric space with graph. As an application, we
prove the existence and the uniqueness of a continuous solution for a system
of fractional differential equation by using the results obtained.
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STABILITY OF FIRST ORDER DELAY

INTEGRO-DYNAMIC EQUATIONS ON TIME SCALES

KAMEL ALI KHELIL AND ABDELOUAHEB ARDJOUNI

Abstract. The main purpose of the present work was to establish some
basic theory of time scale calculus which is an efficient mathematical
theory that unifies discrete and continuous calculus. However, we apply
the contraction mapping theorem to obtain asymptotic stability results
about the zero solution for first order delay integro-dynamic equation.
An asymptotic stability theorem with a necessary and sufficient condi-
tion is proved. In addition, the case of the equation with several delays
is studied.
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1. The main results

For the convenience of the reader, let us recall the definition of asymptotic
stability. For each t0, we define

m(t0) = min(inf{s− r(s) : s ≥ t0}, inf{s− h(s) : s ≥ t0})
and denote Crd(t0) the space of rd-continuous functions on [m(t0), t0] with

the supremum norm ‖.‖t0 .
For each (t0, φ) ∈ T × Crd(t0), denoted by x(t) = x(t, t0, φ) the unique

solution of the equation

(1) x∆(t) +

∫ t

t−r(t)
a(t, s)x(s)∆s+ b(t)x(t− h(t)) = 0

and x(t) = φ(t), t ∈ [m(t0), t0].
The zero solution of Eq (1) is called
(i) stable if for each ε > 0 there exists a δ > 0 such that |x(t, t0, φ)| < ε

for all t ≥ t0 if ‖φ‖t0 < δ.
(ii) asymptotically stable if it is stable and lim

t→∞
|x(t, t0, φ)| = 0.

Theorem 1.1. Suppose that the following two conditions hold:

(2) lim
t→∞

inf

∫ t

0

1

µ(τ)
log(1 + µ(τ)A(τ))∆τ > −∞,

(3) sup
t≥0

∫ t

0
ω(s)e�A(t, s)∆s = α < 1,

1
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where

A(τ) =

∫ τ

τ−r(τ)
a(τ, s)∆s+ b(τ), A(τ) ∈ R+

and

ω(s) =

∫ s

s−r(s)
|a(s, w)|

∫ σ(s)

w

(∫ u

u−r(u)
|a(u, v)|∆v + |b(u)|

)
∆u∆w

+ |b(s)|
∫ σ(s)

s−h(s)

(∫ u

u−r(u)
|a(u, v)|∆v + |b(u)|

)
∆u.

Then the zero solution of (1) is asymptotically stable if and only if

(4)

∫ t

0

1

µ(τ)
log(1 + µ(τ)A(τ))∆τ →∞ as t→∞.
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STABILITY OF THE SCHRÖDINGER EQUATION WITH A

TIME VARYING DELAY TERM IN THE BOUNDARY

FEEDBACK

WASSILA GHECHAM, SALAH-EDDINE REBIAI, AND FATIMA ZOHRA SIDI ALI

Abstract. In recent years, stability analysis of PDE systems with de-
lay has received a considerable amount of attention; see for example [1],
[7] and the references therein. In [6], Nicaise et al used Lyapunov-based
technique to establish sufficient conditions to guarantee the exponen-
tial stability of the solution of the one-dimensional wave equation with
boundary time-varying delays. This result was extended to general space
dimension in [4]. Our aim in this paper is to study the stability prob-
lem for the Schrödinger equation with a time-varying delay term in the
boundary feedback. This problem was considered in [2] and [3] in the
absence of delay and in [5] for the case of constant delay. Under suitable
assumptions, we prove exponential stability of the solution. This result
is obtained by introducing a suitable energy function and by construct-
ing a suitable Lyapunov functional.
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Keywords and phrases. Schrödinger equation, time-varying delay,
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1. Define the problem

Let Ω be an open bounded domain of Rn with boundary Γ of class C2

which consists of two non-empty parts Γ1 and Γ2 such that, Γ1 ∩ Γ2 = ∅.
In Ω, we consider a Schrödinger equation with a time varying delay term in
the boundary feedback:
(1)



ut(x, t)− i∆u(x, t) = 0 in Ω× (0; +∞),
u(x, 0) = u0(x) in Ω,
u(x, t) = 0 on Γ1 × (0,+∞),
∂u
∂ν (x, t) = iα1u(x, t) + iα2u(x, t− τ(t)) on Γ2 × (0,+∞),
u(x, t− τ(0)) = f0(x, t− τ(0)) on Γ2 × (0, τ(0)),

where

• u0 and f0 are the initial data which belong to suitable spaces.
• ∂

∂ν is the normal derivative.
• τ(t) is the time varying delay.
• α1 and α2 are positive constants.

The main purpose of this work is to prove exponential stability of the system
(1).

1
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TWO-DIMENSIONAL HARDY INTEGRAL INEQUALITIES

WITH PRODUCT TYPE WEIGHTS

BOUHARKET BENAISSA

Abstract. In this work, we give some new two-dimensional weighted
Hardy integral inequalities by using weighted mean operator Hφf , where
f nonnegative integrable function with two variables on Ω = (0,+∞)×
(0,+∞) and φ is a weight function.
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1. Introduction

The inequality

(1)

∫ ∞

0
x−mF q(x)dx ≤

(
q

m− 1

)q ∫ ∞

0
x−m(xf(x))q(x)dx,

where F (x) =

∫ x

0
f(t)dt, m > 1, known as the generalization of Hardy’s

inequality, is satisfied for all functions f non-negative and measurable on
(0,∞) with q > 1. The constant is the best possible. The aim of this
presentation is to give a new two-dimensional weighted Hardy integral in-
equalities by using some elementary methods of analysis and the weighted
Hardy operator H =: Hφf .

2. Main result

Let 0 < a < b < +∞ and 0 < c < d < +∞. We will assume that the
function f is nonnegative integrable on Ω = (0,+∞) × (0,+∞) and the
integrals throughout are assumed to exist and are finite.

Theorem 2.1. Suppose f nonnegative integrable on Ω and q > 1, m > 1.
Let

H(x, y) =
1

Φ(x)Φ(y)

∫ x

a

∫ y

c
φ(t)φ(s)f(t, s) ds dt,

and

Φ(z) =

∫ z

0
φ(s)ds.

If λ ≥ m− 1

q +m− 1
, then

(2)

∫ b

a

∫ d

c

φ(x)φ(y)

Φm(x)Φm(y)
Hq(x, y)dydx

≤
(

λq

m− 1

)2q ∫ b

a

∫ d

c

φ(x)φ(y)

Φm(x)Φm(y)
f q(x, y)dy dx.

1
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3. Applications

Two-Dimensional Weighted Hardy Integral Inequalities
If we put φ(x) = 1 in Theorem 2.1, we have the following corollary.

Corollary 3.1. Suppose q > 1, m > 1 and f be nonnegative integrable
function on Φ. Let

F (x, y) =
1

xy

∫ x

a

∫ y

c
f(t, s) ds dt.

If λ ≥ m− 1

q +m− 1
, then

(3)∫ b

a

∫ d

c
(xy)−m F q(x, y)dydx ≤

(
λq

m− 1

)2q ∫ b

a

∫ d

c
(xy)−m f q(x, y)dydx.

Bilinear Hardy Inequality
Suppose f(x, y) = f1(x).f2(y) where f1, f2 are nonnegative integrable func-
tions on (0,∞), from the Corollary 3.1 we obtain a special bilinear case.

Corollary 3.2. Let q > 1, m > 1 and

F (x, y) =

(
1

x

∫ x

a
f1(t) dt

)(
1

y

∫ y

c
f2(r) dr

)
.

If λ ≥ m− 1

q +m− 1
, then

(4)

∫ b

a

∫ d

c
(xy)−m F p(x, y)dydx ≤

(
λq

m− 1

)2q (∫ b

a
x−mf q1 (x)dx

)

×
(∫ d

c
y−mf q2 (y)dy

)
.

One-Dimensional Analogue Of The Initial Inequality (1)
If we put f1 = f2, a = c, b = d in the Corollary 3.2, we obtain

Corollary 3.3. Suppose q > 1, m > 1 and f nonnegative integrable on
(0,∞). Let

F (x) =
1

x

∫ x

a
f(t) dt.

If λ ≥ m− 1

q +m− 1
, then

(5)

∫ b

a
x−mF q(x)dx ≤

(
λq

m− 1

)q ∫ b

a
x−mf q(x)dx.
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THE EXISTENCE OF TWO SOLUTIONS FOR STEKLOV
PROBLEM INVOLVING THE p(x)-LAPLACIAN

FAREH SOURAYA(1) AND AKROUT KAMEL(2)

Abstract. In this work, By using variational methods and mountain
pass Lemma combined with Ekeland variational principle, and for some
hypothesis, we prove the existence of two nontrivial weak solutions to a
class of p(x)-Laplacian problems.
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1. Define the problem

The goal of this paper, is to study the following Steklov boundary value
problem

(1)8><>:
�div

�
a (x) jrujp(x)�2ru

�
+ jujp(x)�2u = f(x; u) + � juj(x)�2 u in 
;

a (x) jrujp(x)�2 @u@� + b(x)juj
q(x)�2u = h(x; u) on @
:

where 
 is a bounded domain of RN (N � 2) with Lipschitz boundary
@
; @@v is the outer unit normal derivative; p(x);  (x) are continuous func-
tions on 
 such that 1 < p� = inf
 p (x) � p (x) � sup
 p (x) = p+;

we also denote �; + for any  (x) 2 C
�


�
and q�; q+ for any q (x) 2

C (@
) ; p(x) 6=  (x) 6= q(y) for any x 2 
; y 2 @
; a and b are continuous
functions such that

a1 � a(x) � a2; and b1 � b(x) � b2;

where a1; a2; b1 and b2 are positive constants, � is a positive parameter,
(��)p(x)u = �div(jrujp(x)�2ru) denotes the p(x)-Laplacian, f : 
 � R !
R; h : @
 � R ! R are caratheodory functions satisfying some conditions.
More precisely, we assume the following hypothesis.
(A1)There exist M1;M2 > 0; � 2 C(
) and � 2 C(@
); such that

jf (x; u)j �M1

�
1 + juj�(x)�1

�
; for all (x; u) 2 
� R;

jh (x; u)j �M2

�
1 + juj�(x)�1

�
; for all (x; u) 2 @
� R;

where

1 < � (x) < p� (x) ; x 2 
 and 1 < � (x) < p� (x) ; q (x) < p� (x) ; x 2 @
:
1
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(A2) f (x; u) = o
�
jujp

+�1
�
as u! 0 for all x 2 
 and g (x; u) = o

�
jujp

+�1
�

as u! 0 for all x 2 @
:
(A3) There exist R1; R2 > 0; �1; �2 > p+ such that

0 < �1F (x; u) � f(x; u)u; juj � R1; for all x 2 
;
0 < �2H(x; u) � h(x; u)u; juj � R2; for all x 2 @
;

where F (x; t) =
R t
0 f(x; s)ds;H(x; t) =

R t
0 h(x; s)ds:

(A4) There exist 1 < t1 < p�; such that

lim inf
u!0

F (x; u) + �
(x) juj

(x)

jujt1
> 0; for all x 2 
:

(A5) There exist 1 < t2 < q�; such that,

lim inf
u!0

H (x; u)

jujt2
> 0; for all x 2 @
:

where

p� (x) =

8<:
Np(x)
N�p(x) ; if p(x) < N;

1; if p(x) � N:
; p� (x) =

8<:
(N�1)p(x)
N�p(x) ; if p(x) < N;

1; if p(x) � N:
;

we have our main result

Theorem 1.1. If min
�
��; ��

�
> p+;min(�1; �2) > q

+ and (A1)� (A5) are
satis�ed. Then, there exists �0 > 0 such that for every � 2 (0; �0) ; problem
(1) has at least two non trivial solutions.

To prove Theorem 1.1, we used mountain pass theorem [2] and Ekeland
principle [1].
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THE GLOBAL EXISTENCE AND NUMERICAL

SIMULATION FOR A COUPLED REACTION-DIFFUSION

SYSTEMS ON EVOLVING DOMAINS

REDOUANE DOUAIFIA, SALEM ABDELMALEK, AND AMAR YOUKANA

Abstract. The aim of this paper is to demonstrate the global exis-
tence, uniqueness and uniform boundedness of solutions for a weakly
coupled class of reaction-diffusion systems on isotropically growing do-
main. Our results generalize some known results on fixed domains and
in addition to the new results on evolving domains. As well as we affirm
our theoritical findings through numerical exprements.

2010 Mathematics Subject Classification. 35R37, 35A01, 81T80.

Keywords and phrases. Reaction-diffusion systems, global existence,
Lyapunov function.

1. Define the problem

Let Ωt ⊂ RN (N ≥ 1) be a simply connected, bounded, time-dependent
domain with its moving boundary ∂Ωt is smooth (t ≥ 0), which can be
mapped into a static reference domain Ω0 by using a Ck-diffeomorfism (k ≥
2) Ξt : Ω0 → Ωt. Moreover, the diffeomorfism Ξt are assumed belongs
to the class C2 with respect to the variable t. The evolution equations
for reaction-diffusion systems can be obtained from the application of the
law of mass conservation in an elemental volume using Reynolds transport
theorem. The change of domain’s volume Ωt generates a flow of velocity
ϑ(x, t). Therefore, the evolving of domain has the effect of introducing
the following extra terms to the classical model of reaction-diffusion, an
advection term ϑ.∇u represents the transport of the species u by the flow
velocity ϑ and a dilution term u(∇.ϑ) due to local volume change (cf. [1]).
In this work we deal with a class of reaction-diffusion systems on a growing
domain which takes the following form:

(1)





∂u

∂t
+∇.(ϑu)− d1∆u = Λ− λ(t)f(u, v)− µu in Ωt × (0, T ) ,

∂v

∂t
+∇.(ϑv)− d2∆v = λ(t)f(u, v)− σh(v) in Ωt × (0, T ) ,

∂u

∂ν
(x, t) =

∂v

∂ν
(x, t) = 0 on ∂Ωt × (0, T ) ,

u(y, 0) = u0(y) > 0, v(y, 0) = v0(y) > 0 on Ω0,

where T > 0, x := x(t) = (x1(t), . . . , xN (t)), with ν being the unit outer
normal to ∂Ωt, d1, d2, µ, σ > 0, Λ > 0, and λ ∈ C1 (R+;R+). All along the
paper, we will use the following assumptions:

(A1) f ∈ C1
(
R2
+;R+

)
, h ∈ C1 (R+;R+), f(0, η) = h(0) = 0 for all η ∈

R+.
1
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(A2) The flow velocity ϑ(x, t) is identical to the domain velocity, i.e.,

ϑ =
dx

dt
.

(A3) Isotropic domain deformation, i.e., the diffeomorfism Ξt satisfies

(2) x = Ξt(y) = χ(t)y, y ∈ Ω0, x ∈ Ωt, t ∈ [0, T ].

(A4) χ ∈ C2
(
R+;R∗+

)
, χ(0) = 1, inf

t>0
χ(t) > 0, and

(3) N inf
t>0

dχ(t)

dt
> −min {µ, σ} inf

t>0
χ(t)

(A5) There exist a nondecreasing function ϕ ∈ C1 (R+;R+) and g ∈
C1
(
R2
+;R+

)
, such that

(4) f(ξ, η) ≤ ϕ(ξ)g(ξ, η), ∀(ξ, η) ∈ R2
+, lim

η→∞
log(1 + g(., η))

η
= 0.

(A6) h(η)− η > 0 for all η ∈ R+, and lim
η→∞

log(1 + h(η))

η
= 0.

The main purpose of this study is to supplement the investigations of [12,
13]. We prove the global existence, uniqueness and uniform boundedness of
solutions for system (1) on domains with isotropic growth, and nonlinearities
of weak exponential growth.

Remark 1.1. From the assumptions (A2)-(A4), the flow velocity ϑ has the
following explicit form

(5) ϑ(x, t) =
χ̇(t)

χ(t)
x, x ∈ Ωt, t ∈ [0, T ]

where χ̇(t) =
dχ(t)

dt
. Thus, the divergence of the flow velocity ϑ takes the

form, ∇.ϑ = N
χ̇(t)

χ(t)
.

Remark 1.2. From the assmption (A4) we note that, if the domain growth
function is evolving increasingly (e.g. logistic growth) then the parameters
µ and σ are arbitrary in R∗+ := (0,+∞).
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UNSTEADY FLOW OF BINGHAM FLUID IN A THIN

LAYER WITH MIXED BOUNDARY CONDITIONS

YASSINE LETOUFA

Abstract. In this paper we consider the dynamic system for Bing-
ham fluid in a three-dimensional thin domain with Fourier and Tresca
boundary condition. We study the existence and uniqueness results for
the weak solution, then we establish its asymptotic behavior, when the
depth of the thin domain tends to zero. This study yields a mechanical
laws that give a new description of the behavior this system.
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1. Define the problem

This work gives an extension to describe the flow of fluids in a dynamic
system to some of the results obtained in a series of papers [1, 2, 3], in which
the authors considered a stationary case only of the general equations de-
scribing the motion of some fluid flows in bounded thin domain, with slip
and mixed boundary conditions. The aim of this paper is to study the as-
ymptotic analysis of an incompressible Bingham fluid in a dynamic regime
in a three dimensional thin domain mixed boundary and subject to slip phe-
nomenon on a part of the boundary. We are interested here in the existence
and uniqueness for this problem and also its behavior when the thickness of
the thin domain tends to zero. The departure point is the laws of conser-
vation, which includes here the effect of the acceleration-dependent inertia
forces. A friction law of Tresca and the Fourier boundary condition are
assumed on the boundary. Then we will compare our results to stationary
problem in [2, 3, 4].

The main difficulty here is to estimate the solutions of the problem, due
to the fractional term for the Bingham constitutive law and the assumption
coming from the initial velocity. The proofs presented in this work are
based on regularization methods and classical results for elliptic variational.
We present in first, some notation and the weak formulation of problem.
Second ,we introduce a scaling as in [4], we give some needed estimates on
the velocity and pressure, also the convergence results. Finally, we present
the limit problem and we give the mechanical interpretation of the results.
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VARIABLE HERZ-TYPE HARDY ESTIMATE OF

MARCINKIEWICZ INTEGRALS OPERATORS

RABAH HERAIZ

Abstract. In this communication, we present two results concerning
the Marcinkiewicz integral operator µ. In the first, we show that µ

is bounded from K̇
α(·),q(·)
p(·) (Rn) to K̇

α(·),q(·)
p(·) (Rn) for α(·), p(·) and q(·)

satisfies some conditions. Next, we present the boundedness of µ on

variable Herz-type Hardy spaces HK̇
α(·),q(·)
p(·) (Rn), these results are from

[2].
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1. Variable Herz-type Hardy Estimate of Marcinkiewicz
Integrals Operators

For 0 < β ≤ 1, the Lipschitz space Lipβ(Rn) is defined as

Lipβ(Rn) :=

{
f : ‖f‖Lipβ(Rn) = sup

x,y∈Rn;x 6=y

|f(x)− f(y)|
|x− y|β <∞

}
.

Given Ω ∈Lipβ(Rn) be a homogeneous function of degree zero and
∫

sn−1

Ω
(
x′
)

dσ(x′) = 0

where x′ = x/|x| for any x 6= 0 and Sn−1 denotes the unit sphere in Rn
equipped with the normalized Lebesgue measure.

The Marcinkiewicz integral µ is defined by

µ(f) (x) :=

(∫ ∞

0
|FΩf (x)|2 dt

t3

) 1
2

where

FΩf (x) :=

∫

|x−y|≤t

Ω(x− y)

|x− y|n−1 f (y) dy.

It is well known that the operator µ was first defined by Stein [1] and under
the conditions above, Stein proved that µ is of type (p, p) for 1 < p ≤ 2 and
of weak type (1, 1).

We define the set of variable exponents by

P0 (Rn) := {p measurable: p (·) : Rn → [c,∞[ for some c > 0} .
1
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The subset of variable exponents with range [1,∞) is denoted by P(Rn).
For p ∈ P0 (Rn), we use the notation

p− = ess inf
x∈Rn

p(x) , p+ = ess sup
x∈Rn

p(x).

Definition 1.1. Let p ∈ P0(Rn). The variable exponent Lebesgue space

Lp(·)(Rn) is the class of all measurable functions f on Rn such that the
modular

%p(·)(f) :=

∫

Rn
|f(x)|p(x) dx

is finite. This space is a quasi-Banach function space equipped with the
norm

‖f‖p(·) := inf

{
µ > 0 : %p(·)(

1

µ
f) ≤ 1

}
.

If p(x) ≡ p is constant, then Lp(·)(Rn) = Lp(Rn) is the classical Lebesgue
space.

Definition 1.2. We say that a function g : Rn → R is locally log-Hölder
continuous, if there exists a constant clog > 0 such that

|g(x)− g(y)| ≤ clog

ln(e+ 1/|x− y|)
for all x, y ∈ Rn. If

|g(x)− g(0)| ≤ clog

ln(e+ 1/|x|)
for all x ∈ Rn, then we say that g is log-Hölder continuous at the origin (or
has a log decay at the origin). If, for some g∞ ∈ R and clog > 0, there holds

|g(x)− g∞| ≤
clog

ln(e+ |x|)
for all x ∈ Rn, then we say that g is log-Hölder continuous at infinity (or
has a log decay at infinity).

Definition 1.3. Let p, q ∈ P0(Rn). The mixed Lebesgue-sequence space

`q(·)(Lp(·)) is defined on sequences of Lp(·)-functions by the modular

%`q(·)(Lp(·))((fv)v) =
∑

v

inf

{
λv > 0 : %p(·)(

fv

λ
1/q(·)
v

) ≤ 1

}
.

The (quasi)-norm is defined from this as usual:

‖(fv)v‖`q(·)(Lp(·)) = inf

{
γ > 0 : %`q(·)(Lp(·))(

1

γ
(fv)v) ≤ 1

}
.

Since q+ <∞, then we can replace by the simpler expression %`q(·)(Lp(·))((fv)v) =∑
v

∥∥|fv|q(·)
∥∥
p(·)
q(·)

.

If E ⊂ Rn is a measurable set, then |E| stands for the (Lebesgue) measure
of E and χE denotes its characteristic function. Before giving the definition
of variable Herz spaces, let us introduce the following notations

Bk := B(0, 2k) , Rk := Bk \Bk−1 and χk = χRk , k ∈ Z.
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Definition 1.4. Let p, q ∈ P0(Rn) and α : Rn → R with α ∈ L∞(Rn).

The inhomogeneous Herz space K
α(·)
p(·),q(·) (Rn) consists of all f ∈ Lp(·)Loc (Rn)

such that

‖f‖
K
α(·)
p(·),q(·)

:= ‖f χB0‖p(·) +

∥∥∥∥
(

2kα(·)f χk
)
k≥1

∥∥∥∥
`q(·)(Lp(·))

<∞.

Similarly, the homogeneous Herz space K̇
α(·),q(·)
p(·) (Rn) is defined as the set of

all f ∈ Lp(·)Loc (Rn \ {0}) such that

‖f‖
K̇
α(·),q(·)
p(·) (Rn)

:=
∥∥∥
(

2kα(·)f χk
)
k∈Z

∥∥∥
`q(·)(Lp(·))

<∞.

The Hardy-Littlewood maximal operator M is defined on L1
loc by

M(f)(x) := sup
r>0

1

|B(x, r)|

∫

B(x,r)
|f(y)|dy,

where B(x, r) is the open ball in Rn centered at x ∈ Rn and radius r > 0.

It was shown that M : Lp(·) → Lp(·) is bounded if p ∈ P log and p− > 1.
Let ϕ ∈ C∞0 (Rn) with supp ϕ ⊆ B0,

∫
Rn ϕ(x)dx 6= 0 and ϕt (·) = t−nϕ

( ·
t

)

for any t > 0. Let Mϕ(f) be the grand maximal function of f defined by

Mϕ(f)(x) := sup
t>0
|ϕt ∗ f(x)|.

Here we give the definition of the homogeneous Herz-type Hardy spaces

HK̇
α(·),q(·)
p(·) .

Definition 1.5. Let p, q ∈ P0(Rn) and α : Rn → R with α ∈ L∞(Rn).

The homogeneous Herz-type Hardy space HK̇
α(·),q(·)
p(·) (Rn) is defined as the

set of all f ∈ S ′(Rn) such that Mϕ(f) ∈ K̇α(·),q(·)
p(·) (Rn) and we define

‖f‖
HK̇

α(·),q(·)
p(·)

:= ‖Mϕ(f)‖
K̇
α(·),q(·)
p(·)

.

2. Mains results

In this section, we present two results concerning the Marcinkiewicz inte-

gral operator µ. In the first, we show that µ is bounded from K̇
α(·),q(·)
p(·) (Rn)

to K̇
α(·),q(·)
p(·) (Rn) for α(·), p(·) and q(·) satisfies some conditions.

Theorem 2.1 ([2]). Suppose that 0 < τ ≤ 1, p ∈ P log(Rn) with p+ <
∞,Ω ∈ Ls(Sn−1), s > (p′)− and α ∈ L∞(Rn), q ∈ P0(Rn). If α and q have
a log decay at the origin such that

− n

p(0)
−n
s
−τ < α (0) < n− n

p(0)
−n
s
−τ and − n

p∞
−n
s
−τ < α∞ < n− n

p∞
−n
s
−τ

then µ is bounded from K̇
α(·),q(·)
p(·) (Rn) (or K

α(·),q(·)
p(·) (Rn)) to K̇

α(·),q(·)
p(·) (Rn) (or

K
α(·),q(·)
p(·) (Rn))

In the next result we treat the boundedness of Marcinkiewicz integral
operators with homogeneous kernel on variable Herz-type Hardy spaces.
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Theorem 2.2 ([2]). Suppose that p1, p2 ∈ P log(Rn) with p+
1 < 2n and

1
p1(·) − 1

p2(·) = 1
2n , α ∈ L∞(Rn), q1, q2 ∈ P0(Rn),Ω ∈ Ls(Sn−1) with s >

(p′1)−. If α, q1 and q2 are log-Hölder continuous, both at the origin and at
infinity such that

α (·) ≥ n(1− 1

p−1
), q1(0) ≤ q2(0) and (q1)∞ ≤ (q2)∞ .

Then µ is bounded from HK̇
α(·),q1(·)
p1(·) (Rn) to K̇

α(·),q2(·)
p2(·) (Rn).
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STABILITY OF A HIGH-ORDER Q-FRACTIONAL SYSTEM

LOUIZA TABHARIT AND HOUARI BOUZID

Abstract. This work is devoted to the study of existence and unique-
ness of the solution of the q-fractional differential system (1). For this
purpose, we use a fixed point theorem of Banach. The stability in the
sense of ” Ulam-Hyers Rassias ” of the solution with respect to the initial
integro-differential conditions is proved. Besides, we discuss an example
for illustration of the main work.

2010 Mathematics Subject Classification. 26A33, 34K20, 39B72.

Keywords and phrases. Caputo derivative, fractional integral, q-
analogue, fixed point, stability .

1. Define the problem

Recently, the q-fractional calculus has gained a lot of attention. Consid-
ered as a relationship between mathematics and physics, it derives its impor-
tance from the fact that it intervenes in distinguished fields such as quantum
mechanics and stochastic analysis, chemistry and neurology [1], [2], [3]. With
a wide expansion of fractional calculus, the study of the stability of fractional
differential equations has also motivated researchers to produce many con-
tributions [4], [5], [6]. Our new results are essentially based on the following
nonlinear fractional system of differential equations, for t ∈ [0; 1] :





Dα1
q u1(t) = C1(t)f1(t, u1(t), ..., um(t)) +

l∑
i=1

g1i (t,D
γ
qu1(t), ...., D

γ
qum(t))

Dα2
q u2(t) = C2(t)f2(t, u1(t), ..., um(t)) +

l∑
i=1

g2i (t,D
γ
qu1(t), ...., D

γ
qum(t))

...

Dαm
q um(t) = Cm(t)fm(t, u1(t), ..., um(t)) +

l∑
i=1

gmi (t,Dγ
qu1(t), ...., D

γ
qum(t))

uk(0) = τk,

u
(j)
k (0) = 0, j = 1, ..., n− 2
Dn−αk
q uk(1) = Jαk−n+1

q uk(λk),

(1)

where Dαk
q denote the q-derivative of Caputo and Jαk−n+1

q is the q-fractional

integral, 0 < q < 1, l,m ∈ N∗, αk ∈ (n − 1, n], γ ∈ (0, n − 1] , τk, λk ∈ R+

and f , g : [0, 1]× Rm → R, Ck : I → R are given functions.

1
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2 LOUIZA TABHARIT AND HOUARI BOUZID

We define the Banach space in which we will study the uniqueness of the
solution by

S := {(u1, ..., um) : uk ∈ C([0, 1] ,R), Dαkuk ∈ C([0, 1] ,R) , k = 1, 2, ...,m} ;

endowed with the norm :

‖(u1, ..., um)‖S = max
1≤k≤m

(‖uk‖∞ , ‖Dαkuk‖∞) where ‖uk‖∞ = sup
0≤t≤1

|uk| , k = 1, 2, ...,m.

By the following lemma, we present the integral form of the solution of our
system.

Lemma 1.1. The solution of the fractional differential equation

(2) Dαk
q uk(t) = hk(t), n− 1 < αk < n, 0 < q < 1, n ∈ N− {1} ;

with (hk)k=1,...,m ∈ C([0, 1] ,R), under the following conditions





uk(0) = τk,

u
(j)
k (0) = 0, j = 1, ..., n− 2
Dn−αk
q uk(1) = Jαk−n+1

q uk(λk)

; k = 1, ...,m,

is given by the formula

uk(t) =
1

Γq(αk)

∫ t

0
(t− qs)(αk−1)hk(s)dqs+ τk

+tn−1


 Γq (αk + 1)(

λαk
k − [αk]q

)
Γq (n)



∫ 1

0

(1− qs)(2αk−n−1)

Γq(2αk − n)
hk(s)dqs

−tn−1

 Γq (αk + 1)(

λαk
k − [αk]q

)
Γq (n)



∫ λk

0

(λk − qs)(2αk−n)

Γq(2αk − n+ 1)
hk(s)dqs

−tn−1

 Γq (αk + 1)(

λαk
k − [αk]q

)
Γq (n)


 τkλ

αk−n+1
k

Γq (αk − n+ 2)
,

where λαk
k 6= [αk]q .

Moreover, under some hypothisis we show uniqueness of the solution of
the nonlinear system (1) by:

Theorem 1.2. Assume that (H1) and (H3) are satisfied. If

max
0≤k≤m

(
Mkωk +l

i=1 ϕ
k
i

)(
∆k

1,∇k1
)
< 1

is valid, then (P1) has a unique solution on [0, 1] .

Our second main result consists to prove that the solution is stable in the
sens of Ulam-Hyers-Rassias.
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Theorem 1.3. Assume that (H1) − (H3) and
(
Mkωk +l

i=1 ϕ
k
i

)
< 1 holds.

If there exists Φ ∈ C ([0, 1] ,R+) such that∣∣∣Dαk
q uk (t)− Ck(t)fk(t, u1(t), ..., um(t))−li=1 g

k
i (t,Dγ

qu1(t), ...., D
γ
qum(t))

∣∣∣ ≤ εkΦ (t) ,

is valid for k = 0, ...,m; t ∈ [0, 1], then the fractional system (P1) is Ulam-
Hyers-Rassias stable with respect to Φ.
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A COMPACT FOURTH ORDER FINITE DIFFERENCE

SCHEME FOR THE DIFFUSION EQUATION WITH

NONLINEAR NONLOCAL BOUNDARY CONDITIONS

S.DEHILIS, A.BOUZIANI, AND S.BENSAID

Abstract. In this article, fourth-order compact finite difference scheme
is developed to solve the diffusion equation with nonlinear nonlocal
boundary conditions. The proposed scheme is derived by combining
a fourth-order compact finite difference formula in space and a back-
ward differentiation for the time derivative term. Nonlinear terms are
linearized by Taylor expansion. Numerical examples are provided to
verify the accuracy and efficiency of our proposed method.

2010 Mathematics Subject Classification. 35K58, 65L12.

Keywords and phrases. Nonlinear nonlocal boundary conditions,
Fourth-order compact difference scheme.

1. Define the problem

Consider the diffusion equation in one-dimensional time-dependent

(1)
∂u

∂t
− ∂2u

∂x2
= f (x, t) , 0 < x < 1, 0 < t ≤ T,

with the initial condition

(2) u (x, 0) = φ (x) , 0 < x < 1,

and the nonlinear nonlocal boundary conditions

(3) u(0, t) =

∫ 1

0
p(x, t)ϕ(u(x, t))dx+ E (t) , 0 < t ≤ T,

(4) u(1, t) =

∫ 1

0
q(x, t)ψ(u(x, t))dx+G (t) , 0 < t ≤ T,

where f, p, q, φ, ϕ, ψ,G and E are known functions.
Mathematical formulation of this problem arises naturally in various en-

gineering models, such as thermoelasticity ( [4] thermodynamics [5], heat
conduction [2, 3, 1, 6]. Many numerical methods in the past few years
have been developed for solving a parabolic initial-boundary value problems
which involve nonlocal boundary conditions of the type :

u (0, t) =

∫ 1

0
p (x, t)u (x, t) dx+ E (t) , 0 < t ≤ T,

u (1, t) =

∫ 1

0
q (x, t)u (x, t) dx+G (t) , 0 < t ≤ T.

Much less effort is given to the problem with nonlinear nonlocal type bound-
ary conditions (3) and (4). Authors of [1] considered the implicit difference

1
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2 S.DEHILIS, A.BOUZIANI, AND S.BENSAID

scheme for the solution of the heat equation with nonlinear nonlocal bound-
ary condition of the type :

(5) u (0, t) =

∫ 1

0
p (x, t)uγ (x, t) dx+ E (t) , 0 < t ≤ T,

(6) u (1, t) =

∫ 1

0
q (x, t)uγ (x, t) dx+G (t) , 0 < t ≤ T,

Recently, the authors of [2] proposed a second order accurate difference
scheme for the diffusion equation with nonlinear nonlocal boundary con-
ditions (5) and (6), authors used the Forward time centred space (FTCS),
DufortFrankel scheme (DFS), Backward time centred space (BTCS), Crank-
Nicholson method (CNM).

Therefore this work is aimed at producing a fourth order accurate dif-
ference scheme for the diffusion equation with nonlinear nonlocal boundary
conditions (3)and (4).
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A DISCRETISED APPROACH FOR A PDE-CONSTRAINED

BI-OBJECTIVE OPTIMAL CONTROL PROBLEM

SOUHEYLA ZELMAT, BOUBAKEUR BENAHMED, AND DJILLALI BOUAGADA

Abstract. In this paper, we are interesting in solving numerically the
optimal control problem governed by an advection-diffusion equation
which model a practical environmental problem. The infinite dimen-
sional problem is discretized by application of discontinuous Galerkin
method. Then, we discretized the objective and the PDE equation.

2010 Mathematics Subject Classification. 65N30, 49J20, 65K10,
49J52.

Keywords and phrases. Optimal control problem, discontinuous
Galerkin method, advection-diffusion equation, euler backward.

1. Define the problem

We try to solve the following state constrained optimal control problem
of linear steady advection-diffusion equation:

(1) min
y

{
1

2

∫ T

0

∫

Ω
[y(t, x)− yd(t, x)]2dxdt,

1

2

∫ T

0
||u(t)||2dt

}

(2)



∂y

∂t
(t, x)− k∆xy + β(t, x).∇y(t, x) =

m∑

i=1

ui(t)χi(x) for (t, x) ∈ [0, T ]× Ω

∂y

∂η
(t, x) + αiy(t, x) = αiya(t) for (t, x) ∈ Σi = (0, T )× Γi

y(0, x) = y0(x) for x ∈ Ω.

and

(3) ua(t) ≤ u(t) ≤ ub(t), for almost everything t ∈ [0, T ].
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A NUMERICAL SOLUTION FOR A COUPLING SYSTEM

OF CONFORMABLE TIME-DERIVATIVE TWO

DIMENSIONAL BURGERS’EQUATIONS

ILHEM MOUS1 AND ABDELHAMID LAOUAR2

Abstract. In this paper, we deal with a numerical solution for a cou-
pling system of fractional conformable time-derivative two-dimensional
(2D) Burgers equations. The presence of both the fractional time deriva-
tive and the nonlinear terms in this system of equations makes solving it
more difficult. Firstly, we use the Cole-Hopf transformation in order to
reduce the coupling system of equations to a conformable time-derivative
2D heat equation for which the numerical solution is calculated by the
explicit and implicit schemes. Secondly, we calculate the numerical solu-
tion of the proposed system by using both the obtained solution of the
conformable time-derivative heat equation and the inverse Cole-Hopf
transformation. This approach may show its efficiency to deal with this
class of fractional nonlinear problems. Some numerical experiments are
displayed to consolidate our approach.

2010 Mathematics Subject Classification. 34A08, 26A33, 34K28.

Keywords and phrases. Burgers equation, Cole-Hopf transformation,
Conformable time-derivative.

1. Define the problem

In this work, we are interested in studying a following coupling system
of the fractional conformable derivative 2D Burgers’equations which incor-
porate the interaction between the nonlinear convection processes and the
diffusive viscous processes

(1)





∂αu

∂tα
+ u

∂u

∂x
+ v

∂u

∂y
= r

(
∂2u

∂x2
+
∂2u

∂y2

)
,

∂αv

∂tα
+ u

∂v

∂x
+ v

∂v

∂y
= r

(
∂2v

∂x2
+
∂2v

∂y2

)
,

where α∈]0; 1[, r > 0 the diffusion coefficient, (x, y) ∈ Ω (a rectangular
domain), t > 0 and ∂αu/∂tα, ∂αv/∂tα mean conformable derivatives respec-
tively of the functions u(x, y, t) and v(x, y, t).

Subject to the initial conditions

(2)





u(x, y, 0) = u0(x, y), for any (x, y) ∈ Ω,

v(x, y, 0) = v0(x, y), for any (x, y) ∈ Ω,
1
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and the boundary conditions

(3)





u(x, y, t) = f(x, y, t), for any (x, y) ∈ ∂Ω, t > 0,

v(x, y, t) = g(x, y, t), for any (x, y, t) ∈ ∂Ω, t > 0,

where f, g are two given functions.

We need later to use the following potential symmetry condition

(4)
∂u

∂y
=
∂v

∂x
.

Many works concerned the one/two viscous Burgers’equation (with integer-
order derivative) using the Cole-Hopf transformation [2, 5]. It is known that
the Burgers’equation has been used as a mathematical model in various ar-
eas such as number theory, gas dynamics, heat conduction, elasticity theory,
etc. It has a lot of similarity to the famous Navier-Stokes equations [1, 3]
and has often been used as a simple model equation for comparing the ac-
curacy of different computational algorithms. However the inviscid Burgers
equation lacks one most important property attributed to turbulence since
the solutions do no exhibit chaotic features like sensitivity with respect to
initial conditions.

References

[1] M. Chau, A. Laouar, T. Garcia and P. Spiteri, Grid solution of problem with unilateral
constraints, Numer. Algorithms, 75 (4)(2017)

[2] W. Liao, A fourth-order finite method for solving the system of two-dimensional Burg-
ers’ equation, Internat. J. for Numer. Methods Fluids, (2010)

[3] I. Mous and A. Laouar, A study of the shock wave schemes for the modified Burg-
ers’equation, J. Math. Anal., (2020)

[4] I. Mous and A. Laouar, Analytical and numerical solutions of a fractional conformable
derivative of the modified Burgers equation using the Cole-Hopf transformation, CEUR
Workshop Proceeding, 2748 (2020)

[5] C. S. Ronobir and L. S. Andallah, Numerical Solution of Burger’s equation via Cole-
Hopf transformation diffusion equation, Int. J. Scientific Engineering Research, (2013)

LANOS Laboratory and Department of Mathematics, Badji Mokhtar Uni-
versity1

E-mail address: mousilhem@yahoo.fr 1

LANOS Laboratory and Department of Mathematics, Badji Mokhtar Uni-
versity2

E-mail address: abdelhamid.laouar@univ-annaba.dz 2

204



A NEW DECOMPOSITION APPROACH BY

EIGENVALUES FOR APPLICATION OF DIFFERENCE OF

CONVEX FUNCTIONS ALGORITHM IN SOLVING

QUADRATIC PROBLEMS

SAADI ACHOUR

Abstract. Difference of Convex functions Algorithms (DCA) are used
to solve nonconvex optimization problems, specifically quadratic pro-
gramming ones, generally by finding global approximate solutions expe-
diently. DCA efficiency depends on two basic parameters that directly
affect the speed of its convergence towards the optimal solution. The
first parameter is the selected decomposition and the second is the as-
signed initial point. In this work, I propose a new decomposition for a
DCA in quadratic form. The proposed decomposition uses the Eigen-
values of the matrix of the quadratic part of the problem, herein named
as Quadratic Decomposition for the Difference of Convex functions by
Eigenvalues (QDDCE). In order to test the performance of QDDCE, I
propose an experimental study using a set of nonconvex quadratic prob-
lems based on an implementation framework with MATLAB to allow as-
sessment of key performance indicators (including the computing time
and possible dimensions of the problems). The Results demonstrated
the possibility of applying the QDDCE for problems with n ≤ 40 di-
mensions, while difficulties were experienced with problems of n > 40
dimensions. The reason for this complexity is the difficulty of comput-
ing the Eigenvalues in large dimensions. Note that these results were
obtained using a computer with medium specifications, and therefore
the number of dimesions should increase with a higher performance ma-
chine. To conclude, this work proposes a decomposition strategy using
Eigenvalues, which should facilitate application of DCA to nonconvex
quadratic problems.

2010 Mathematics Subject Classification. 90C26, 90C27, 90C20.

Keywords and phrases. Nonconvex quadratic programming, Numer-
ical experiments, Approximated global minium, DCA, Matlab, .
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A PRIMAL-DUAL INTERIOR POINT METHOD FOR

HLCP BASED ON A CLASS OF PARAMETRIC KERNEL

FUNCTIONS

NADIA HAZZAM AND ZAKIA KEBBICHE

Abstract. In an attempt to improve theoretical complexity of large-
update methods, in this paper, we propose a primal-dual interior-point
method for P∗ (κ)-horizontal linear complementarity problem. The method
is based on a class of parametric kernel functions. We show that the
corresponding algorithm has the best known iteration bounds for large-
update methods for P∗ (κ)-horizontal linear complementarity problem
that is O

(
(1 + 2κ)

√
n logn log n

ε

)
. We illustrate the performance of the

proposed kernel function by some comparative numerical results that
are derived by applying our algorithm on five kernel functions.

2010 Mathematics Subject Classification. 90C33; 90C51.

Keywords and phrases. Horizontal linear complementarity prob-
lem, P∗ (κ)-matrix, interior-point method, kernel function, complexity
bound.

1. Define the problem

The aim of our paper is to propose a primal-dual interior-point method
based on a class of trigonometric kernel functions for solving the horizontal
linear complementarity problem (HLCP) in the standard form

(1) −Mx+Ny = q, xy = 0, (x, y) ≥ 0,

where M,N ∈ Rn×n, q ∈ Rn and xy denotes the componentwise product of
vectors x and y.
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Abstract

In this paper, we present Taylor Collocation method to find approximate solution for integro-differential
equation.In which we transform the differential part using the backward difference and the integral part to
a matrix form. In the end, we provide an error analysis and we conclude by giving the algorithm.

Keywords:Fredholm integro-differential equation, Taylor Collocation, Backward Difference.
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A FINITE VOLUME METHOD FOR THE DARCY
PROBLEM

AKRAM BOUKABACHE

Abstract. The goal of this presentation is to introduce a simple �nite
volume method to solve the Darcy problem. This method is so simple
such that both velocity and pressure are approximated by piecewise
constant functions, and the stability of the scheme is obtained by adding
to the mass balance stabilization terms

2010 Mathematics Subject Classification. 76D07, 65M08

Keywords and phrases. �nite volume methods, Darcy problem,

1. Define the problem

The Darcy equations can be written as:

�u+rp = f in 
(1a)

r � u = 0 in 
(1b)

u � n = 0 on @
(1c)

where u can be interpreted as the velocity �eld of an incompressible �uid
motion, p is then the associated pressure and � is a positive constant.
The weak formulation of the Darcy equations seeks (u;p) 2 H0 (div; 
)�

L20 (
) such that

� (u;v)0;
 � (p;r � v)0;
 = (f ;v)0;
 8v 2 H0 (div; 
)(2a)

(q;r � u)0;
 = 0 8q 2 L20(
)(2b)

we get the following

Theorem 1.1. The weak Darcy problem has a unique solution (u;p) 2
H0 (div; 
)� L20 (
).

For the construction of the discrete problem the Galerkin method is fol-
lowed. let Xh � H0 (div; 
) and Mh � L20(
) be two �nite-dimensional
spaces with h the discretization parameter.
Following the Petrov-Galerkin methodology and a stabilization procedure,

a discrete formulation reads

�(uh;vh)0;
 � (ph;rh � vh)0;
 = (f ;vh)0;
 8vh 2 Xh
(qh;rh � uh)0;
 + J (ph; qh) = 0 8q 2 Xh

where

J (ph; qh) = �
X
K

Z
@Kn@


h@K [ph] [qh]ds

is a stabilization term, with � > 0.
1

208



2 AKRAM BOUKABACHE

Lemma 1.2 (Scheme stability). There exists two positive real numbers c1
and c2 independent of h such that, for all ph 2 Mh one can �nd vh 2 Xh
satisfying:

kvhkD = 1
b (vh; ph) � c1kphk0;
 � c2hjvhjD
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A FRICTIONAL CONTACT PROBLEM BETWEEN TWO

PIEZOELECTRIC BODIES WITH NORMAL COMPLIANCE

CONDITION AND ADHESION

TEDJANI HADJ AMMAR

Abstract. We consider a mathematical model which describes the qua-
sistatic frictional contact problem between two piezoelectrics bodies with
normal compliance condition and adhesion. The evolution of the bond-
ing field is described by a first order differential equation. We derive
variational formulation for the model and prove an existence and unique-
ness result of the weak solution. The existence of a unique weak solution
of the model is established under a smallness assumption of the friction
coefficient. The proof is based on arguments of evolutionary variational
inequalities and Banach’s fixed point theorem.

2010 Mathematics Subject Classification. 35Q74, 47H10, 49J40,
74D10.

Keywords and phrases. Piezoelectric material, adhesion, existence
and uniqueness, fixed point.

An elastic material with piezoelectric effect is called an electro-elastic
material and the discipline dealing with the study of electro-elastic materials
is the theory of electro-elasticity. Their bases were underlined by Voigt
[11] who provided he first mathematical model of a linear elastic material
which takes into account the interaction between mechanical and electrical
properties. General models for elastic materials with piezoelectric effects can
be found in [5, 6, 10] and, more recently, in [1]. The importance of this paper
is to make the coupling of the piezoelectric problem and a frictional contact
problem with adhesion between two electro–elastics bodies. The novelty in
all these papers is the introduction of a surface internal variable, the bonding
field, denoted in this paper by β, it describes the point wise fractional density
of adhesion of active bonds on the contact surface, and some times referred
to as the intensity of adhesion. Following [3], the bonding field satisfies the
restriction 0 ≤ β ≤ 1, when β = 1 at a point of the contact surface, the
adhesion is complete and all the bonds are active, when β = 0 all the bonds
are inactive, severed, and there is no adhesion, when 0 < β < 1 the adhesion
is partial and only a fraction β of the bonds is active.
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A LIMITED-MEMORY QUASI-NEWTON ALGORITHM

FOR GLOBAL OPTIMIZATION VIA STOCHASTIC

PERTURBATION

RAOUF ZIADI AND ABDELATIF BENCHERIF-MADANI

Abstract. In this paper, we give a new representation to the lim-
ited memory BFGS methods, and show how to use them efficiently for
solving smooth global optimization problems, by considering a random
perturbation following a truncated Gauss’s law. Our approach is suit-
able for solving large-scale bound-constrained global optimization prob-
lems. Theoretical results ensure that the proposed method converges to
a global minimizer almost surely. Numerical experiments are achieved
on some typical test problems and comparisons with well-known meth-
ods are carried out to show the performance of our algorithm.

2010 Mathematics Subject Classification. 90C26, 90C90.

Keywords and phrases. Global optimization, Limited memory BFGS
method, Stochastic perturbation, Truncated Gauss’s law.

In this paper we consider the following bound-constrained global opti-
mization problem of the form:

(P ) min
x∈D

f(x)

where the objective function f(x) : Rn → R is not necessarily convex but
differentiable whose gradient at point x is ∇f(x), D = {x ∈ Rn|L ≤ x ≤ U},
where L and U are lower and upper bounds.

The problem (P ) is of interest in many real-world applications (such eco-
nomics, electronics, telecommunication and so on ) involving objective func-
tions which are differentiable but non-convex [1, 2]. Many methods for
solving differentiable global optimization problems have been proposed [5],
and these methods are classified into deterministic and stochastic methods.
As is well known, deterministic algorithms provide a theoretical guarantee
of locating the ε-global optimum. When dealing with an oscillating func-
tion in a large search space or in relatively high dimensions, deterministic
exploration methods (such as DIRECT methods, the approach based on
the introduction of an auxiliary function or covering methods [3, 4, 6], etc.)
are not effective and can have unreasonable calculation times. Indeed, with
these approaches, it is hard to obtain useful information while exploring all
the regions of the feasible domain.

Stochastic algorithms such as Simulated Annealing algorithm (SA), Clas-
sification and Regression Trees (CART), Random Walk, Tabu Search (TS),
Variable Neighbourhood Search (VNS) etc. [7], involve random sampling or
a combination of random sampling and local search; they are theoretically
well studied. They ensure the convergence to the global minimum only in
probability. Unfortunately, most of them are not well suited to efficiently
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solve high-dimensional problems, particularly those containing more than
10 variables.

In this paper, we suggest a method for solving large-scale problems. This
method is a modification of the limited memory BFGS method for bound-
constrained problems and we show how to use it efficiently to deal with
global optimization problems by the adjunction of a stochastic perturbation
following a truncated Gauss’s law. This approach leads to a stochastic
descent method where the deterministic sequence generated by the limited
memory BFGS method is replaced by a sequence of random variables.

Mathematical results concerning the convergence to the global minimum
are established. Numerical experiments carried out on a large number of
test functions show a quite promising performance of the new algorithm in
comparison with some well known stochastic methods.
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A LOGARITHMIC BARRIER METHOD VIA

APPROXIMATE FUNCTIONS FOR CONVEX QUADRATIC

PROGRAMMING

SORAYA CHAGHOUB AND DJAMEL BENTERKI

Abstract. In this work, we consider a convex quadratic program with
inequality constraints. We use a logarithmic barrier method based on
some new approximate functions, these functions allow the computation
of the displacement step easily and in a short time, unlike the line search
method which is expensive in terms of computational volume and neces-
sitates much time. We have developed an implementation with MAT-
LAB and conducted numerical tests on some examples of large size. The
obtained numerical results show the accuracy and the efficiency of our
approach.

2021 Mathematics Subject Classification. Optimization, Numer-
ical analysis, Operation research.

Keywords and phrases. Quadratic programming, Line search, Ap-
proximate function.

1. Position of the problem

Let us consider the following convex quadratic problem:

(PQ)

{
min q(x) = 1

2x
tQx+ ctx

x ∈ D,
where Q is a Rn×n symmetric semidefinite matrix, c ∈ Rn and D = {x ∈
Rn : Ax ≥ b}, such that b ∈ Rm and A is a Rm×n matrix.

We define the unconstrained perturbed problem associated to (PQ) as
follows:

(PQr)

{
min qr(x)
x ∈ Rn,

where qr : Rn → (−∞,+∞] is a barrier function defined by:

qr(x) =





q(x)− r
m∑
i=1

ln < ei, Ax− b > if Ax− b > 0,

+∞ otherwise.

With (e1, e2, ..., em) is the canonical base in Rm and r is a strictly positive
barrier parameter.

We use a logarithmic barrier approach to solve a series of problems (PQr),
the solution of these later will converge to that of (PQ) when r tends to zero.
We use the proposed approximate functions to compute the displacement
step. We also promote our study by numerical tests to prove the efficiency
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of the technique of approximate functions and compare it with line search
method.
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A MULTI-REGION DISCRETE TIME MATHEMATICAL

MODELING OF THE DYNAMICS OF COVID-19 VIRUS

PROPAGATION USING OPTIMAL CONTROL

BOUCHAIB KHAJJI 1, OMAR BALATIF 2, AND MOSTAFA RACHIK 1

Abstract. We study in this work a discrete mathematical model that
describes the dynamics of transmission of the Corona virus between
humans on the one hand and animals on the other hand in a region or
in different regions. Also, we propose an optimal strategy to implement
the optimal campaigns through the use of awareness campaigns in region
j that aims at protecting individuals from being infected by the virus,
security campaigns and health measures to prevent the movement of
individuals from one region to another, encouraging the individuals to
join quarantine centers and the disposal of infected animals. The aim
is to maximize the number of individuals subjected to quarantine and
trying to reduce the number of the infected individuals and the infected
animals. Pontryagin’s maximum principle in discrete time is used to
characterize the optimal controls and the optimality system is solved
by an iterative method. The numerical simulation is carried out using
Matlab. The Incremental Cost-Effectiveness Ratio was calculated to
investigate the cost-effectiveness of all possible combinations of the four
control measures. Using cost-effectiveness analysis, we show that control
of protecting susceptible individuals, preventing their contact with the
infected individuals and encouraging the exposed individuals to join
quarantine centers provides the most cost-effective strategy to control
the disease.
Keywords and phrases. Discrete mathematical model, Multi-regions,
Optimal control, Covid-19, Cost-effective intervention.

1. Define the problem

Strategies used to reduce the spread covid-19 disease
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A NEW KERNEL FUNCTION BASED INTERIOR POINT

ALGORITHM FOR LINEAR OPTIMIZATION

SAFA GUERDOUH, WIDED CHIKOUCHE, AND IMENE TOUIL

Abstract. The studies on the kernel function-based primal-dual interior-
point algorithms indicate that a kernel function not only represents a
measure of the distance between the iteration and the central path, but
also plays a critical role in improving the computational complexity of
an interior-point algorithm. In this work, we present a new kernel func-
tion and give the corresponding primal-dual interior point algorithm for
linear optimization. We present a simplified analysis to obtain the com-
plexity of generic interior point method based on the proximity function
introduced by this kernel function.

2010 Mathematics Subject Classification. 90C05, 90C51, 90C31.

Keywords and phrases. Linear optimization, Primal-dual interior
point methods, kernel functions, Complexity analysis, Large- and small-
update methods.

1. Position of the problem

In this paper, we deal with the LO problem in the standard form:

(P ) min{cTx : Ax = b, x ≥ 0},
and its dual problem

(D) max{bT y : AT y + s = c, s ≥ 0},
where A ∈ Rm×n, b ∈ Rm and c ∈ Rn are given.

Without loss of generality, we assume that (P ) and (D) satisfy the interior
point condition (IPC), i.e., there exists (x0, s0, y0) such that

Ax0 = b, x0 > 0, AT y0 + s0 = c, s0 > 0

For solving linear optimization problems, a basic scheme of the primal-
dual interior-point methods (IPMs) is to follow the central path to reach an
optimal solution. The central path can be obtained by solving a parametric
optimization problem in terms of a barrier function with proper barrier
parameters. It is well known that the use of certain kernel functions lead to
significant reduction of the complexity gap between large- and small-update
methods comparing to the logarithmic kernel function [4]. This was one of
the main motivations of considering other kernel functions as an alternative
to classical logarithmic kernel function.

The purpose of this paper is to introduce a new kernel function with log-
arithmic barrier term and propose a primal–dual interior point method for
LO which gives better complexity bound for large-update methods compared
to the complexity obtained based on the classical logarithmic kernel func-
tion [4]. The obtained iteration bound for large-update methods, namely,
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O
(
n

3
4 log n

ε

)
, improves the classical iteration complexity with a factor n

1
4 .

For small-update methods, we derive the iteration bound O
(√
n log n

ε

)
,

which matches the currently best known iteration bound for small-update
methods.
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A PRIORI AND A POSTERIORI ERROR ANALYSIS FOR A

HYBRID FORMULATION OF A PRESTRESSED SHELL MODEL

REZZAG BARA RAYHANA & MERABET ISMAIL

Abstract. This work deals with the finite element approximation of a pre-
stressed shell model using a new formulation where the unknowns are described

in Cartesian and local covariant basis respectively. A penalized version is then
considered. We present a robust a priori error estimation. Moreover, a reliable

and efficient a posteriori error estimator is also presented.

1. The constrained continuous problem.

The model takes the following variational form :
{

Find U = (u, r) ∈ V such that

a(U, V ) + ap(U, V ) = L(v), ∀V = (v, s) ∈ V
(1.1)

where

a(U, V ) = tam(u, v)+tat((u, r), (v, s))+
t3

12
af (r, s), ap(r, s) =

t3

12
ap(r, s) and L(v) =

∫

ω

f ·v.

V = {(v, si) ∈ H1 (ω,R3)×(L2(ω))3 : sα ∈ H1(ω), s3 = γ̃12(v) =
1

2
(∂1v·∂2ϕ−∂2v·∂1ϕ), a.e in ω v|Γ0 = sα|Γ0 = 0}

(1.2)

The bilinear forms am, at , af , and ap correspond to the membrane, transverse
shear, flexural and prestress effects, respectively. The thickness t of the shell is
assumed to be constant and positive [1].

2. Penalized versions for problem (1.1).

In this section, we present a penalized versions for the prestressed model (1.1).
Let us consider the relaxed function space:

X(ω) = {(v, s) ∈ H1
(
ω,R3

)
×H1(ω)×H1(ω)×L2(ω), v|Γ0

= sα|Γ0
= 0} (2.1)

equipped with the natural norm. Let 0 < ε ≤ 1. We consider the following
variational problem:

{
Find Uε = (uε, rε) ∈ X such that

a(Uε, V ) + ap(rε, s) + ε−1b(Uε, V ) = L(V ),∀V = (v, s) ∈ X.
(2.2)

where, b(U, V ) =

∫

ω

(r3 − γ̃12(u))(s3 − γ̃12(v)) dx

2000 Mathematics Subject Classification. 74K25, 74S05.
Key words and phrases. shell theory, finite element, hybrid formulation, a priori analysis,

posteriori analysis.
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3. Finite element approximation and a posteriori error analysis:

Let (Th)h>0 be a regular affine family of triangulations which covers the domain
ω. Let Eh be the set of edges belonging to T which are not contained in Γ0 and E1

T

be the set of elements of Eh which are contained in Γ̄1 and let ωT the set of elements
of (Th) sharing an edge with T . We introduce the finite dimensional spaces

Xh ={Vh = (vh, sh) ∈ (C0(ω̄)3)2/Vh|T ∈ (Pk(T,R3)× Pk(T )3), ∀T ∈ Th, k ≥ 1}.

(3.1)

we consider the following discrete problem:
{

Find Uh = (uh, rh) ∈ Xh such that ,

a(Uh, Vh) + ap(Uh, Vh) + ε−1b(Uh, Vh) = L(Vh),∀Vh = (vh, sh) ∈ Xh
(3.2)

3.1. A priori analysis.

Proposition 3.1. There exists a unique solution Uh ∈ Xh of the problem (3.2).
Moreover, this solution satisfies

‖Uh‖X ≤ Cε‖L‖.
Assume that the solution Uε of the problem (2.2) belongs to [H2(ω;R3)]×[H2(ω)]2×
[H1(ω)] then the following a priori error estimate holds:

‖Uε − Uh‖X ≤ Cεh
(
‖uε‖H2(ω;R3) +

∑

α=1,2

‖rα‖H2(ω) + ‖r3‖H1(ω).

)
(3.3)

In order to obtain uniform estimate, we use a mixed formulation (as in [3], sec.4).
Let us first introduce the following new unknown

ψε :=
q(Uε)

ε

and the functional space M = L2(ω). Then we rewrite the continuous penalized
problem (2.2) as :





Find (Uε, ψε) ∈ X×M(ω) such that

ã(Uε, V ) + (ψε, q(V )) = L(V ), ∀V ∈ X
(q(Uε), φ)− ε(ψε, φ) = 0, ∀φ ∈M

(3.4)

where, ã(·, ·) = a(·, ·) + ap(·, ·) and we consider the following discrete problem:




Find (Uh, ψh) ∈ Xh×Mh such that

ã(Uh, Vh) + (ψh, q(Vh)) = L(Vh), ∀Vh ∈ Xh
(q(Uh), φh)− ε(ψh, φh) = 0, ∀φh ∈Mh

(3.5)

where,

Mh ={φh ∈ C0(ω̄)/φh|T ∈ Pk(T ), ∀T ∈ Th}. (3.6)

Corollary 3.2. Assume that Uε belongs to H2(ω,R3)×H2(ω)2 ×H1(ω). Then it
holds that,

‖Uε − Uh‖X + ‖ψε − ψh‖M ≤ Ch‖Uε‖H2(ω,R3)×H2(ω)2×H1(ω). (3.7)
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3.2. A posteriori analysis.

Theorem 3.3. Let f ∈ L2(ω;R3) the following a posteriori error estimate holds
between the solution Uε of problem (2.2) and the solution Uh of problem (3.2).

‖Uε − Uh‖X ≤ C



(∑

T∈Th
(η2
T + εdT )2

) 1
2

+ εch


 (3.8)

ηT =

3∑

i=1

η
(i)
T

Theorem 3.4. Let f ∈ L2(ω;R3) Then, the following bounds hold.

η
(i)
T ≤ C


‖U

ε − Uh‖X +

( ∑

T∈ωT

(εdT )
2

)1

2
+ εch


 (3.9)

where, η
(i)
T , i = 1, 2, 3 are the local (interior and jump) residuals and εch, ε

d
T

represent the oscillations of the coefficients and the data[2].
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ABOUT SPECTRAL APPROXIMATION OF THE

GENERALIZED QUADRATIC SPECTRUM

SOMIA KAMOUCHE, HAMZA GUEBBAI, AND MOURAD GHIAT

Abstract. The aim of our work is to avoid the spectral pollution ap-
pears in the approximation of quadratic spectral problems. We build a
new method which is called the generalized quadratic spectrum approx-
imation. Therefore, we prove the convergence of our method under the
collectively compact convergence.

2010 Mathematics Subject Classification. 34L16, 47A10, 47A75,
45C05, 65N15, 93B60.

Keywords and phrases. generalized quadratic spectrum, spectral
approximation, spectral pollution.

1. Define the problem

Let (B, ‖ · ‖B) be a Banach space, BL(B) is the Banach space of all linear
bounded operators defined on B to itself. Its norm is described as follows

∀M ∈ BL(B) : ‖M‖ = sup
‖u‖B=1

‖Mu‖B.

For M , N and K in BL(B), we define the generalized quadratic spectral
problem as follows: Find µ ∈ C and u ∈ B−{0} such that

Q(µ)u := µ2Mu+ µNu+Ku = 0.

In the case when M,N and K are matrices, this type of problems is known as
the quadratic eigenvalue problem. It was treated by Tisseur and al, Huang
al, Chen and al in [5, 6, 7].

Our goal is to generalize the different results obtained in [1, 2, 3, 4] and
the studies effected for matrices in [5, 6, 7] .

For that, we define the generalized quadratic resolvent set, noted re(M,N,K),
by

re(M,N,K) = {µ ∈ C : Q(µ) is invertible and bounded}
and the generalized quadratic spectrum, denoted sp(M,N,K) by

sp(M,N,K) = C \ re(M,N,K).

In addition, we define the generalized quadratic point spectrum, noted
spp(M,N,K) is the set of the generalized quadratic eigenvalues given by:

spp(M,N,K) = {µ ∈ C, ∃u ∈ B \{0} : Q(µ)u = 0}
1
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and the generalized quadratic essential spectrum which is given by the fol-
lowing set:

spess(M,N,K) = {µ ∈ C : Q(µ) is injective, not surjective }
Then, we can define the generalized quadratic spectrum as follows:

sp(M,N,K) = spp(M,N,K) ∪ spess(M,N,K).

Let RQ(·) the generalized quadratic solving operator associated to M,N and
K define on re(M,N,K) ⊂ C to BL(B) by

∀z ∈ re(M,N,K) RQ(z) = Q−1(z) =
(
z2M + zN +K

)−1
.

Theorem 1.1. if Mn, Nn and Kn converge in collectively compact sense to
M,N and K respectively, for all n ∈ N, µn ∈ sp(Mn, Nn,Kn) and µn → µ
then µ ∈ sp(M,N,K).
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ADOMIAN DECOMPOSITION METHODS FOR

POPULATION BALANCE EQUATIONS

ACHOUR IMANE AND DR. BELLAGOUN ABDELGHANI

Abstract. Particulate processes are modeled by The Population bal-
ance equations (PBEs) which are partial integro differential equations.The
population balance equations (PBEs) rarely has an analytical solution.
However, few cases with assumed functional forms of breakage and ag-
gregation kernels, daughter particle distribution exist. A typical popu-
lation balance equations include spatial transport terms ,i.e. convection
and diffusion terms. In our work we try to solve PBEs for breakage and
aggregation with these terms using a powerful technique called Adomian
decomposition method. This technique overcomes the crucial difficulties
of numerical discretization and stability that often characterize previ-
ous solutions in this area. the solutions which we obtained using this
technique are analytical and are not available in the literature.

Keywords and phrases. Population Balance model Adomian method-
Adomian polynomial

1. Define the problem

The subject consists in developing numerical methods for a certain class of
integro-differential equations representing population balance models. The
method will be supported by powerful analytical tools such as Adomian-type
polynomial procedures.
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ANALYSE OF A LOCAL PROJECTION FINITE ELEMENT

STABILIZATION OF NAVIER-STOKES EQUATIONS

JOANNA DIB, DJILALI AMEUR, AND SÉRÉNA DIB

Abstract. We analyze a pressure stabilized finite element method for
the approximation of the unsteady Navier-Stokes equations and investi-
gate their stability and convergence properties. We mainly concentrate
on the analyse of an equal-order finite element pair for velocity and pres-
sure. We present a particular framework that allows the introduction of
a minimal stabilizing term which have better local conservation proper-
ties, to overcome the lack of the so-called Ladyzenskaja-Babuska-Brezzi
condition and eliminate the inconsistency when equal-order approxima-
tions for velocity and pressure are employed. As a result, the stabilized
method leads to optimal rates of convergence for both velocity and pres-
sure approximations.

2010 Mathematics Subject Classification. 65N12, 65N30, 65N15,
76D05, 76N10, 35Q30.

Keywords and phrases. Navier-Stokes equations modeling, Stabilized
finite element method, local-projection method, Error estimate.
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APPLICATION OF THE GENERALIZED MULTIQUADRIC

METHOD FOR SOLVING ELLIPTIC PARTIAL

DIFFERENTIAL EQUATIONS

SELMA BOUZIT AND REBIHA ZEGHDANE

Abstract. In general, the mathematical description of physical pro-
cesses leads to partial differential equations. In some cases the exact
solution can be obtained by using analytical tools or some perturbations
methods but in more experimental and practical situations is possible
by numerical methods. In this work, we have used generalized multi-
quadric approximations radial basis functions for solving some elliptic
partial differential equations with Dirichlet or Newmann boundary con-
ditions as two dimensional Laplace, and Poisson equations. The subject
here is to found a good agreement between exact and numerical solu-
tion by using some choices of generalized radial basis functions to obtain
excellent approximations.

AMS Subject Classification: 35XX, , 45XX35Q99, 65D05, 65Z99,
34K28.

Keywords: Radial basis functions, Laplace equation, Poisson equation,
Boundary conditions, Numerical solution.

1. Introduction

In 1968, Hardy introduced the multiquadric (MQ) method for the con-
struction approximate two dimensional surfaces of field data. The im-
portance of multiquadric is recongnized by its successful in some applica-
tion in economics, geography...etc, based on some comparaison scattered
data shemes, Franke has concluded that MQ performs the best in accuracy
against difference element methods. After Kansa [1] used this multiquadric
radial basis functions for the solution of PDEs in computational fluide dy-
namics. Several papers have been written to show the excellent performance
of this radial basis function which replace element and difference methods
and it has exponential convergence. In this work, we use the generalized
radial basis function to solve some elliptic partial differential equation as
test examples, we used the method of Cross validation to estimate the opti-
mal shape parameter. The problem yields to a system of algebraic equations
which can be solved for the unknoun coefficients. In the following, we present
examples for determining solutions of elliptic PDE using generalized multi-
quadrics radial basis functions.
As a numerical example we consider first two dimensional Poisson problem

(1) Uxx + Uyy = f(x, y),

on a unit cercle domain Ω.
The function f in equation (1) is specified for that the exact solution is

1
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U(x, y) =
65

65 + (x− 0.2)2 + (y − 0.1)2
.

Dirichlet boundary conditions are given on the boundary ∂Ω
The centers of radial basis functions are determined by an optimal algorithm
and the errors in this approximation are given over a range of the shape pa-
rameter.
Secondly, in addition of Dirichlet boundary conditions, Newmann type bound-
ary conditions as well as mixed type. We consider the Poisson problem on
the unit square, the function f is set to

f(x, y) = −2(2y3 − 3y2 + 1) + 6(1− x2)(2y − 1),

and Dirichlet boundary conditions of U(0, y) = 2y3−3y2+1 and U(1, y) = 0
are applied as Newmann boundary conditions of ∂U

∂y = 0 along y = 0 and

y = 1. The second example is the 1d nonlinear boundary value problem

Uxx + Ux − U = f,

on the interval [0, 1], the function f is specified from that

U(x) = x2 expx,

is the exact solution. Dirichlet boundary conditions U(0) = 0 and U(1) = e
are applied.
In this example, we use some technique of linearization to solve this prob-
lem.
The third problem is the following Poisson equation

Uxx + Uyy = (λ2 + η2) exp (λx+ ηy), (x, y) ∈ Ω,

with

U(x, y) = exp (λx+ ηy), (x, y) ∈ ∂Ω,

is considered as an example with different values of λ and η
The exact solution is

U(x, y) = exp (λx+ ηy).

The domain Ω is taken to be a quarter of circle. All the examples are
solved by the generalized RBF with different values of the exponent and
compared with the results of MQ RBF interpolation. We conclude from the
test equation that the method is shown to work well for the Laplace and
Poisson elliptic equations using sufficiently large number of terms to acheive
absolute errors of order 10−5. All test equtions are also solved by Hardy’s
MQ radial basis functions for comparaison. The numerical results shown
that the generalized radial basis gives a good results for solving elliptic
PDEs.
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ADAPTIVE MODIFIED PROJECTIVE

SYNCHRONIZATION OF DIFFERENT

FRACTIONAL-ORDER CHAOTIC SYSTEMS WITH

UNKNOWN PARAMETERS

HADJER ZERIMECHE, TAREK HOUMOR, AND ABDELHAK BERKANE

Abstract. This work focus on the adaptive modified projective syn-
chronization (AMPS) method to synchronize two different fractional-
order chaotic systems (FOCS) with uncertain parameters. The aim of
(AMPS) is to guarantee the synchronization of (FOCS) by using the
Lyapunov stability theory, an adaptive controller and some techniques
of fractional calculus. We use the (AMPS) method to show how the
(FOCS) can be synchronized by driving its output to the desired pat-
tern. The important feature of (AMPS) method is the synchronization
between almost all (FOCS) with known or unknown parameters can
achieve.

2010 Mathematics Subject Classification. 34A08, 34D06.

Keywords and phrases. Synchronization, adaptive control, fractional-
order chaotic systems.

1. Main results

Consider the fractional-order drive and response systems with uncertain
parameters, respectively, as follows:

(1) cDq
tx = f(x) + F (x)α,

(2) cDq
t y = g(y) +G(y)β + u.

Where 0 < q < 1 are the fractional-orders, f(x), g(y) ∈ Rn, are vector
functions;
F (x) ∈ Rn×m, G(y) ∈ Rn×p, are matrix functions; α ∈ Rm, β ∈ Rp are
uncertain parameter vectors.
Our goal is to design (AMPS) between the system (1) and the system (2)
by constructing an effective adaptive controller.
In this paper, the synchronization error between the drive and response
systems is defined by e = x − θy, where θ is diagonal matrix which called
scaling factor matrix θ = diag(θ11, θ22, . . . , θnn), θii 6= 0, (i = 1 . . . n).
Then

(3)
cDq

t e = cDq
tx− θ cDq

t y
= f(x) + F (x)α− θg(y)− θG(y)β − θu.

Theorem 1.1. The controller u is proposed as the following

(4) u = θ−1f(x) + θ−1F (x)α̃− g(y)−G(y)β̃ + θ−1ke,
1
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and adaptive law of parameter is taken as

(5)

{
cDq

t α̃ = [F (x)]T e+ ε(α− α̃),
cDq

t β̃ = [−G(y)]T θe+ η(β − β̃).

Then, the (AMPS) between drive system (1) and response system (2) can be
achieved by using the controller (4) and parameter updating law (5).
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AN IMPROVING PROCEDURE OF THE INTERIOR

PROJECTIVE ALGORITHM FOR LINEAR SEMIDEFINIT

OPTIMIZATION PROBLEMS

EL AMIR DJEFFAL, MOUNIA LAOUAR, AND MAHMOUD BRAHIMI

Abstract. In this paper, a practical modification of Karmarkars pro-
jective algorithm for linear semidefinit optimization programming prob-
lems. This modification leads to a considerable reduction of the cost
and the number of iterations.

2010 Mathematics Subject Classification. 90C05, 90A51.

Keywords and phrases. Linear semidefinit programming; Interior
point methods; Karmarkars algorithm; YeLustig algorithm
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AN ITERATIVE REGULARIZATION METHOD FOR AN

ABSTRACT ILL-POSED BIPARABOLIC PROBLEM

ABDELGHANI LAKHDARI AND NADJIB BOUSSETILA

Abstract. In this work, we are concerned with the problem of approx-
imating a solution of an ill-posed biparabolic problem in the abstract
setting. In order to overcome theinstability of the original problem, we
propose a regularizing strategy based on the Kozlov-Maz’ya iteration
method. Finally, some other convergence results including some explicit
convergence rates are also established under a priori bound assumptions
on the exact solution.

2010 Mathematics Subject Classification. 47A52, 65J22.

Keywords and phrases. inverse problem, biparabolic problem, itera-
tive regularization.

1. Formulation of the problem

We consider the inverse source problem of determining the unknown
source term u(0) = f and the temperature distribution u(t) for 0 ≤ t < T ,
in the following biparabolic problem:

{ (
d
dt +A

)2
u(t) = u”(t) + 2Au′(t) +A2u(t) = 0 0 < t < T
u(T ) = g ut(0) = 0 ,

where A is a positive, self-adjoint operator with compact resolvent.
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ANALYSIS AND OPTIMAL CONTROL OF A

MATHEMATICAL MODELING OF THE SPREAD OF

AFRICAN SWINE FEVER VIRUS WITH A CASE STUDY

OF SOUTH KOREA AND COST-EFFECTIVENESS

ABDELFATAH KOUIDERE, OMAR BALATIF, AND MOSTAFA RACHIK

Abstract. In this work, we study a mathematical model describing
the dynamics of the transmission of African Swine Fever Virus (ASFV)
between pigs on the one hand and ticks on the other hand. The aim
is to Protecting pigs against the African swine fever virus. We analy-
sis the mathematical model by using Routh–Hurwitz criteria, the local
stability of ASFV-free equilibrium and ASFV equilibrium are obtained.
We also study the sensitivity analysis of the model parameters to know
the parameters that have a high impact on the reproduction number
R0. The aims of this paper is to reduce the number of infected pigs and
ticks. By proposing several strategies, including the iron fencing to iso-
late uninfected pigs, spraying pesticides to fight ticks that transmit the
virus, and getting rid of the infected and suspected pigs. Pontryagin’s
maximal principle is used to describe the optimal controls and the op-
timal system is resolved in an iterative manner. Numerical simulations
are performed using Matlab. The increased cost-effectiveness ratio was
computed to investigate the cost effectiveness of all possible combina-
tions of the three controls measures. Using a cost-effectiveness analysis,
we showed that controlling the protection of susceptible pigs, to prevent
contact between infected pigs and infected ticks on one hand and sus-
ceptible pigs on the other hand, it is the most cost-effective strategy for
disease control.

2010 Mathematics Subject Classification. xxxx, xxxx, xxxx.

Keywords and phrases. African swine fever virus, Optimal control,
Local stability, Mathematical model, ASF virus.

1. Define the problem

We consider a mathematical model SP IPRPST IT , that describes the
transmission of African swine fever virus in pigs population. We divide
the population denoted by N into five compartments: pigs susceptible SP ,
the pigs infected IP , the pigs recovered R, ticks susceptible SP and the
ticks infected IT . Hence, the dynamics of the spread of African swine fever
virus mathematical model is governed by the following system of differential
equation:

1
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(1)





dSP (t)
dt = ΛP − µP SP (t) − β1

SP (t)IP (t)
N − β2

SP (t)IT (t)
N

dIP (t)
dt = β1

SP (t)IP (t)
N + β2

SP (t)IT (t)
N − ( µP + α+ δ)IP (t)

dRP (t)
dt = αIP (t) − µPRP (t)

dST (t)
dt = ΛT − µT ST (t) − β3

ST (t)IP (t)
N

dIT (t)
dt = β3

ST (t)IP (t)
N − µT IT (t)

where SP (0) ≥ 0, IP (0) ≥ 0, RP (0) ≥ 0, ST (0) ≥ 0 and IR(0) ≥ 0 are the
initial state.

References

[1] Kada, D., Kouidere, A., Balatif, O., Rachik, M. and Labriji, E.H., 2020. Mathematical
modeling of the spread of COVID-19 among different age groups in Morocco: Optimal
control approach for intervention strategies. Chaos, Solitons and Fractals, p.110437.

[2] Kouidere, A., Kada, D., Balatif, O., Rachik, M., and Naim, M. (2020). Optimal Control
Approach of a Mathematical Modeling with Multiple Delays of The Negative Impact of
Delays in Applying Preventive Precautions against the Spread of the COVID-19 pan-
demic with a case study of Brazil and Cost-effectiveness. Chaos, Solitons and Fractals,
110438.

LAMS, Department of Mathematics and Computer Science,Faculty of Sci-
ences Ben M’Sik, Hassan II University of Casablanca. Morocco

Email address: kouidere89@gmail.com

Laboratory of Dynamical Systems,Mathematical Engineering Team (INMA),
Department of Mathematics, Faculty of Sciences El Jadida, Chouaib Doukkali
University, El Jadida, Morocco.

Email address: balatif.maths@gmail.com

LAMS, Department of Mathematics and Computer Science,Faculty of Sci-
ences Ben M’Sik, Hassan II University of Casablanca. Morocco

Email address: mrachik@yahoo.fr

235



ANALYSIS OF A ELECTRO-VISCOELASTIC CONTACT

PROBLEM WITH WEAR AND DAMAGE

ABDELAZIZ AZEB AHMED

Abstract. We study a quasistatic problem describing the contact with
friction and wear between a piezoelectric body and a moving foundation.
The material is modeled by an electro-viscoelastic constitutive law with
long memory and damage. The wear of the contact surface due to fric-
tion is taken into account and is described by the differential Archard
condition. The contact is modeled with the normal compliance condi-
tion and the associated law of dry friction. We present a variational
formulation of the problem and establish, under a smallness assump-
tion on the data, the existence and uniqueness of the weak solution.
The proof is based on arguments of parabolic evolutionary inequations,
elliptic variational inequalities and Banach fixed point.

2010 Mathematics Subject Classification.35J85, 49J40, 47J20, 74M1.

Keywords and phrases. Quasistatic process, electro-viscoelastic ma-
terials, damage, normal compliance, friction, wear, existence and unique-
ness, fixed point arguments, weak solution.

1. Problem P

Find a displacement field u : Ω×[0, T ]→ Rd, a stress field σ : Ω×[0, T ]→
Sd, an electric potential field ϕ : Ω × [0, T ] → R , an electric displacement
field D : Ω × [0, T ] → Rd, a damage field β : Ω × [0, T ] → R and a wear
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function ζ : Γ3 × [0, T ]→ R such that

σ = Aε(u̇) + F(ε (u) , β) +

∫ t

0
M(t− s)ε(u(s))ds

+E∗∇ϕ in Ω× (0, T ),

(1)

D = Eε(u)−B∇ϕ in Ω× (0, T ) ,(2)

β̇ − ke 4 β + ∂ΨK(β) 3 S(ε(u), β) in Ω× (0, T ),(3)

Div σ + f0 = 0 in Ω× (0, T ) ,(4)

divD = q0 in Ω× (0, T ) ,(5)

u = 0 on Γ1 × (0, T ) ,(6)

σν = f2 on Γ2 × (0, T ) ,(7)




−σν = pν ,
|στ | ≤ µpν ,
στ = −µpν (u̇τ−υ∗)

|u̇τ−υ∗| if u̇τ 6= υ∗,

ζ̇ = k1µ pν R
∗(|u̇τ − υ∗|),

on Γ3 × (0, T ),(8)

∂β
∂ν = 0 on Γ× (0, T ) ,(9)

ϕ = 0 on Γa × (0, T ) ,(10)

D · ν = q2 on Γb × (0, T ) ,(11)

D · ν = ψ(uν − h− ζ)φL(ϕ− ϕ0) on Γ3 × (0, T ) ,(12)

u(0) = u0, β(0) = β0, ζ(0) = 0 in Ω.(13)
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ANALYSIS OF FRACTIONAL NONLINEAR OSCILLATORS

TEFAHA LEJDEL ALI, SAFIA MEFTAH, AND LAMINE NISSE

Abstract. In this work a modified version of the forced Van der Pol
oscillator in their general form is proposed, introducing fractional-order
time derivatives into the state-space model The resulting fractional-
order Van der Pol oscillator is analyzed in the time and frequency do-
mains, using phase portraits, spectral analysis and bifurcation diagrams.
The fractional-order dynamics is illustrated through numerical simula-
tions of the proposed schemes using approximations to fractional-order
operators.

2010 Mathematics Subject Classification. 65-xx, 65Cxx, 65C20

Keywords and phrases. The forced Van der Pol oscillator, nonlinear
oscillator, Fractional order operators..

1. Define the problem

x(1+λ) + ε(ax2 + b(x(λ))2 + cx+ d)(x(λ))n = f(x, x(λ), t, λ)

Where a, b, c, d ∈ R, n ∈ N, 0 < λ < 1.
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ANALYSIS OF MATHEMATICAL MODEL OF PROSTATE

CANCER WITH ANDROGEN DEPRIVATION THERAPY

ASSIA ZAZOUA AND WENDI WANG

Abstract. A stochastic model of prostate cancer under continuous an-
drogen suppression therapy in [1] is investigated to show the effects of
noises, different competition intensities and dosage amount on treat-
ment strategy. Threshold conditions between extinction and persistence
in mean for the stochastic system are obtained where noises play an
important role in persistence and eradication of tumor cells. Sufficien-
t conditions for the existence of an ergodic stationary distribution are
established. Furthermore, the optimal treatment is approximated by
using numerical simulations. The analysis of this model suggests that
a medicament that overlap with the replication of tumor cells is advan-
tageous for treatment with CAS therapy because of the similar effect
of noise disturbances. In addition, the results motivate physicians to
find a drug that would reduce the activity of resistance cells in order to
prevent relapse and reduce the severity of cancer if it can not be cured.

2010 Mathematics Subject Classification. 76M35,60H30, 65Cxx.

Keywords and phrases. Stochastic noise; Resistance; Persistence;
Extinction; Stationary distribution

1. Define the problem

Mathematics is used in oncology since cancer is one of the most deadly
diseases in recent years. In fact, on the basis of model [2] and model [8] we
have formulated a stochastic competition model of prostate cancer under
continuous androgen suppression therapy given by




dA = [−γ(A− a0)− γa0u]dt,

dX1(t) =

{
r1A

(
1− X1 + αX2

K

)
− (d1 +m1)(1− A

a0
)

}
X1dt

+ σ1X1dB1(t),

dX2(t) =

{
r2

(
1− βX1 +X2

K

)
X2 +m1(1− A

a0
)X1

}
dt+ σ2X2dB2(t),

where, X1 and X2 are the concentrations of androgen-dependent cells and
androgen-independent cells respectively, A is the concentration of androgen
in the blood. All the parameters in the system are positive. Bi(t), i = 1, 2
are independent Brownian motions; σ1 and σ2 denote the intensities of the
white noises, respectively.
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ANALYTICAL SOLUTION OF TWO DIMENSIONAL FLOW

UNDER A GATE USING THE HODOGRAPH METHOD

MAY MANAL BOUNIF AND ABELKADER GASMI

Abstract. The problem of steady two-dimensional free-surface flow of
a fluid issued under a gate is considered. The hodograph method is used
to solve this problem analytically. The principle idea of this method is
based on the transformation of the domain occupied by the fluid in the
physical plane on to a part of unit disk. This simplifies the problem
such that it becomes one-dimensional instead of two-dimensional. The
obtained result are agree with the numerical results given by Gasmi &
Mekias [3]

2010 Mathematics Subject Classification. 76Bxx, 76B07.

Keywords and phrases.Free-surface, zero gravity, hodograph trans-
formation, incompressible flow.

1. Define the problem

The steady two-dimensional irrotational flow issuing under a gate in the
absence of the surface tension forces (see Figure 1) is considered. The fluid
is inviscid and incompressible. The mathematical problem is to seek to the

Figure 1. Sketch of the flow and the coordinates

velocity potential functionϕ who satisfy the governing equations of the flow:

(1) ∆ϕ = 0, in the flow field.

(2)
∂ϕ

∂η
= 0, on the walls

where η is a normal vector of the boundaries.

(3)
1

2

(
∂ϕ

∂x

)2

+
1

2

(
∂ϕ

∂y

)2

= cst, on the free surface.
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ϕ −→ cst, x −→ −∞(4)

ϕ −→ Ux, x −→ +∞(5)
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APPLICATION OF METAHEURISTICS IN SOLVING

INITIAL VALUE PROBLEMS (IVPS).

OUAAR FATIMA

Abstract. Some differential equations admit analytic solutions given
by explicit formulas. However, in most other case only approximated
solutions can be found. Several methods are available in the literature
to find approximate solutions to differential equations. Numerical meth-
ods form an important part of solving IVP in ODE, most especially in
cases where there is no closed form of solutions. The present paper focus
the attention toward solving IVP by transforming it to an optimization
approach which can be solved through the application of non-standard
methods called Metaheuristic. By transforming the IVP into an opti-
mization problem, an objective function, which comprises both the IVP
and initial conditions, is constructed and its optimum solutions repre-
sents an approximative solution of the IVP. The main contribution of the
present paper is divided in twofold. In the one hand, we consider IVPs
as an optimization problem when the search of the optimum solution
is performed by means of MAs including ABC, BA and FPA and a set
of numerical methods including Euler methods, Runge–Kutta methods
and predictor–corrector methods. On the other hand, we propose a new
MA called Fractional Lévy Flight Bat Algorithm (FLFBA) (which is
an improvement of the BA, based on velocity update through fractional
calculus and local search procedure based on a L´evy distribution ran-
dom walk). We illustrates its computational efficiency by comparing its
performance with the previous methodds in solving the bacterial popula-
tion growth models (both the logistic growth model and the exponential
growth model).

2010 Mathematics Subject Classification. 65L05, 90C59.

Keywords and phrases. Initial Value Problem (IVP), Optimization
problem, Exponential problem, Logistic problem, FLFBA, Numerical
methods, Metaheuristic algorithms.

1. Define the problem

To illustrate the FLFBA’s performance and to demonstrate its computa-
tionally efficiency, we select - as a studied problem - the bacterial population
growth models that are the logistic growth and the exponential growth mod-
els by taking a uniform step size h.

The main motivation in the selection of the application examples comes
from the great importance of the exponential equation in modeling any phe-
nomena where a quantity is allowed to undergo unrestrained growth, while
the logistic differential equations [8] are an ODE whose solution is a logistic
function, they are useful in various other fields as well, as they often provide
significantly more practical models than exponential ones which fail to take
into account constraints that prevent indefinite growth, and logistic func-
tions correct this error. They are also useful in a variety of other contexts,
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including machine learning, chess ratings, cancer treatment (i.e. modeling
tumor growth), economics, and even in studying language adoption. The
logistic function is shown to be the solution of the Riccati equation, some
second-order nonlinear ODEs and many third-order nonlinear ODEs.

In this paper, the IVP is formulated as an optimization problem [3, 4, 5,
6, 7] it will be solved with FLFBA compared to several methods including
Euler’s methods (Explicit Euler, Midpoint method and Backward Eulers),
Runge–Kutta methods (RK4, Heuns (RK2)) and predictor–corrector meth-
ods (Adams–Bashforth–Moulton method (ABM)). Then FLFBA is com-
pared with three MAs that are: Artificial Bee Colony Algorithm (ABCA)
inspired by the behavior of honey bees, Bat Algorithm (BA) simulates the
echolocation behavior of bats and Flower Pollination Algorithm (FPA) in-
spired by the flower pollination process of flowering plants [9] to examine
which algorithm find the best numerical solutions with the best effectiveness
for the studied problem. All computations were performed on an MSWin-
dow 2007 professional operating system in the Matlab environment version
R2013a compiler on Intel Duo Core 2.20 GHz. PC.

2. Problem Formulation

We consider the general Cauchy problem as:

(1)

{
y
′

= f(t, y)
y(t0) = y0

,

where t is the independent variable and y = y(t) is the dependent variable.
By using the classical assumption:

f : [t0 − T, t0 + T ]× [y0 − Y, y0 + Y ]→ R,
is continuous and satisfies the Lipschitz condition:

|f(t, y1)− f(t, y2)| ≤ L |y1 − y2| ,
it results there exists a single solution y. There are many methods used
to find the solution, but, in practice, we always solve the problem by using
numerical methods, like Runge-Kutta or Euler methods but these classical
mathematical tools are not very precise. The main goal of this thesis is to
underline the possibility of using a different method, based on metaheuristic
algorithms like FLFBA.

2.1. Objective Function. Finding the values of the unknown function y =
y(t), y : [a, b] → R , according to a finite set of equidistant values of the

independent variable t0 = a < t1 < ... < tn = b, ti = a + ih, h =
b− a
n

.

We denote by yi = y (ti) , i = 1...n the values of the unknown function y,
in accordance with the given division. Thus, the vector (y1, y2, ..., yn) is
an admissible solution. We will consider the population as being a subset
of admissible solutions. Given an instant t, we denote the population by
Y (t). One individual y = (y1, y2, ..., yn) is characterized by the values yi.
The individuals in a natural population are, more or less, adapted. Thus,
in order to simulate natural selection, we will select, in each stage, only one
subset of individuals, namely those who are best adapted. The surplus of
individuals is eliminated, taking into account the decreasing values of the
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objective function. In order to evaluate each individual, we will use the
following approximate formula (finite difference formula) for the derivative:

ý (ti) ≈
yi − yi−1

h
,

∣∣∣∣ý (ti)−
yi − yi−1

h

∣∣∣∣ ≤ const.h.

Consequently, the discrete form of the Cauchy problem will be:

(2)
yi − yi−1

h
= f (ti, yi) , i = 1...n.

The above system is, generally, nonlinear. Finding the vector (y1, y2, ..., yn)
which satisfies the above conditions is our goal. Of course, for an admissible
solution, we do not have the equality in Eq. (2) and, consequently, we have
to consider the error formula:

(
yi − yi−1

h
− f (ti, yi)

)2

.

The objective function associated to an individual y = (y1, y2, ..., yn) will
be:

(3) F (y) =

n∑

i=1

(
yi − yi−1

h
− f (ti, yi)

)2

.

An individual from Y (t) will be better adapted if it implies a smaller value
of the function F . Each individual may suffer some modifications, which
may be hazardous, we will consider that yi ± ε is a mutation for yi.

2.2. Consistency. We denote by ut the best adapted individual in the
population, at the instance t, i.e. the individual in the population which
has the minimum value of the function F . In [2] it’s already stated that the
sequence (ut)t≥0 converges, its limit being the solution of the optimization
problem inf F . While the solution is the limit of a convergent sequence, by
applying the optimization algorithms, the following assertion is true:

For ε > 0 , there is a (y1, y2, ..., yn) such that:

F (y) =
n∑

i=1

(
yi − yi−1

h
− f (ti, yi)

)2

< ε,

it results there is a y = (y1, y2, ..., yn) such that:
∣∣∣∣
yi − yi−1

h
− f(ti,yi)

∣∣∣∣ < h,

taking into account the approximation of the derivative, we have:

|ý (ti)− f(ti,yi)| ≤
∣∣∣∣ý (ti)−

yi − yi−1

h

∣∣∣∣+

∣∣∣∣
yi − yi−1

h
− f(ti,yi)

∣∣∣∣ < Ch,

when C denotes a positive constant. The last relation shows that the final
value y = (y1, y2, ..., yn) is an approximate solution of the Cauchy problem,
for small values of h.

3. Population Growth Models

In this section we explain briefly the two population growth models:
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3.1. Exponential growth. Suppose that P (t) describes the quantity of a
population at time t. For example, P (t) could be the number of milligrams of
bacteria in a particular beaker for a biology experiment at a time t. A model
of population growth tells plausible rules for how such a population changes
over time. The simplest model of population growth is the exponential
model, which assumes that there is a constant parameter r, called the growth
parameter, such that:

Ṕ (t) = rP (t),

holds for all time t. This differential equation it self might be called the
exponential differential equation, because its solution is:

(4) P (t) = P0e
rt,

where P0 = P (0) is the initial population. One noticeable feature of the
exponential model is that, when r is positive, the population always grows
larger and larger without any finite limit. This kind of growth may be a
good model for a new population of bacteria in a beaker, but it does not hold
for a long time. It is easy to see that the equation would imply a population
of bacteria that ultimately outgrew the beaker and even outgrew the planet
earth, since the mass of the bacteria would ultimately exceed the mass of the
earth. Such a model is therefore absurd to model a system for long periods of
time. The fundamental difficulty is that the exponential differential equation
ignores the fact that there are limits to resources needed for the population
to grow. It ignores the needs for food, oxygen, and space; and it ignores
the accumulation of waste products that inevitably arise. The logistic curve
gives a much better general formula for population growth over a long period
of time than does exponential growth.

3.2. Logistic growth. An alternative model was proposed by Verhulst in
1836 [8] to allow for the fact that there are limits to growth in all known
biological systems. He proposed what is now called the logistic differential
equation. The equation involves two positive parameters. The first parame-
ter r is again called the growth parameter and plays a role similar to that of
r in the exponential differential equation. The second parameter K is called
the carrying capacity. The logistic differential equation is written:

Ṕ (t) = rP (t)[
K − P (t)

K
].

Equivalently, in terms of the d notation, the logistic differential equation is:

dP

dt
= rP [

K − P (t)

K
].

Note that when P (t) is very small, then P (t)/K is close to 0, so the en-

tire factor [K−P (t)
K ] is close to 1 and the equation itself is then close to

Ṕ (t) = rP (t); we then expect that the population grows approximately at
an exponential rate when the population is small. On the other hand, if

P (t) gets to be near K, then P (t)/K will be approximately 1, so [K−P (t)
K ]

will be approximately 0, and the logistic differential equation will then say
approximately Ṕ (t) = rP (t)0 = 0. The growth rate will be essentially 0, so
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the population will not grow significantly more. The solution of the logistic
differential equation is:

(5) P (t) =
P0K

P0 + (K − P0)e−rt
,

where P0 = P (0) is the initial population. This formula is the logistic
formula. It tells the equation for the logistic curve.

4. Numerical Experiments

The implementation of any numerical method could turn difficult because
it is necessary to take into account several issues as the discretization order,
the algorithm stability, the convergence speed, how to fulfill the boundary
conditions, etc. In the methods described in this thesis, the original problem
is transformed into an optimization one according to Eq. (3). For making a
quantitative comparison, this section is devoted to compare the FLFBA with
other algorithms, such as other metaheuristic approaches or more traditional
numerical methods, two ordinary differential equations (linear and nonlinear
IVP) have been solved with traditional numerical methods (see Table 3) and
metaheuristic algorithms (see Table 6).

4.1. Application example. Consider a bacterial population growth prob-
lem, when the initial population is 3 milligrams (mg) of bacteria, the car-
rying capacity is K = 100 mg, and the growth parameter is r = 0.2 hour−1.
We want to find the solutions of the differential equations satisfied by this
population by means of FLFBA, ABCA, BA, FPA and more traditional
numerical methods and comparing between their performances.

Exponential growth model The exponential growth model is consid-
ered as a linear first order IVP, hence based on Eq. (4) the exponential
differential equation is given by

P (t) = 3e0.2t.

Logistic growth model The logistic differential equation related to our
example is considered as a Bernoulli differential equation (and also a sepa-
rable nonlinear first order IVP), solving it using either approach gives the
solution as in Eq. (5)

P (t) =
(3)(100)

3 + (100− 3)e−0.2t
=

300

3 + 97e−0.2t

.

4.2. Parameters adopted to solve IVP. FLFBA, ABCA, BA and FPA
are an optimization instrument. Then, the essential differential equation
is converting into discretization form Eq. (3). The difference formula is
used to convert differential equation into discretizations form when the de-
rivative term is replaced in the discretized form by a difference quotient for
approximations. The IVP related parameters are as follows:

(1) The number of interior nodes (n = 9).
(2) The initial condition in our examples is considered by 3 milligrams

(mg) of bacteria and the interval between which the differential equa-
tion is t ∈ [0, 50].
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Parameters Value

Dimension of the search variables (dim) 10
Maximal number of generations (iterations) (M) 100
Population size (pop) 30
The maximal and minimal pulse rate (r0Max, r0Min) (1, 0)
The maximal and minimal frequency (freqDMax, freqDMin) (2, 0)
The maximal and minimal loudness (AMax,AMin) (2, 0)
gamma 0.9
alpha 0.99
The maximal and minimal inertia weight (wMax,wMin) (0.9, 0.2)

Table 1. Parameters adopted to generate FLFBA.

Parameters BA FBA ABCA

Dimension of the search variables (d) 10 10 10
Number of generations (N) 100 100 100
Population size (n) 30 30 30
Loudness (constant or decreasing) (A) 0.5 / /

Pulse rate (constant or decreasing) (r) 0.5 / /

Probabibility switch (p) / 0.8 /

Table 2. Parameters adopted to generate BA, FPA and ABCA.

(3) The interval of the IVP is equally partitioned into (n+ 1) equidistant
subintervals with the length h = (b − a)/n + 1. Since t ∈ [0, 50] in
our example, hence the step size h = 5.

(4) The number of generations is set to 100 and the population size is
set to 30 for all MAs used in this study.

(5) For a better analysis of the results, a Monte Carlo simulation is
performed (i.e. we run the program several times for the same testing
problem) so each optimization procedure was repeated 50 times for
all MAs and in all dimensions.

(6) The objective function:

F (y1, y2, ..., y10) =
10∑
j=1

(
yj−yj−1

h − f (tj−1, yj−1)
)2

=
10∑
j=1

(
yj−yj−1

h − yj−1

)2

.

Table (1) indicates the different parameters used to generate FLFBA [1].
Table (2) gives the parameters adopted to generate BA, FPA and ABCA
(for more details about these three algorithms see [9].

4.3. Comparison of FLFBA with numerical methods. In this subsec-
tion, we look into several methods of obtaining the numerical solutions to
ordinary differential equations (ODEs) in which all dependent variables (x)
depend on a single independent variable (t).
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APPLICATION OF METAHEURISTICS IN SOLVING INITIAL VALUE PROBLEMS (IVPS).7

i xi Exact Expl Euler RK4 Heuns Midpoint Back Euler ABM FLFBA

Problem 1
0 0 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3 0000
1 5 8.0000 6.0000 8.0000 8.0000 8.0000 6.0000 8.1250 8.0000
2 10 22.000 12.000 22.000 19.000 19.000 12.000 22.005 22 000
3 15 60.000 24.000 60.000 47.000 47.000 24.000 59.597 60.000
4 20 164.00 48.000 161.00 117.00 117.00 48.000 160.08 167.00
5 25 445.00 96.000 437.00 293.00 293.00 96.000 429.57 453.00
6 30 1210.0 192.00 1184.0 732.00 732.00 192.00 1152.8 1236.0
7 35 3290.0 384.00 3207.0 1831.0 1831.0 384.00 3093.7 3319.0
8 40 8943.0 768.00 8684.0 4578.0 4578.0 768.00 8302.7 8977.0
9 45 24309 1536.0 23520 11444 11444 1536.0 22282 24346
10 50 66079 3072.0 63700 28610 28610 3072.0 59798 66120

Problem 2
0 0 3.00000 3.00000 3.00000 3.00000 3.00000 3.00000 3.00000 3.00000
1 5 7.75510 5.91000 7.73340 7.23540 7.25650 5.91000 7.73330 7.75550
2 10 18.6017 11.4707 18.5208 16.5923 16.7499 11.4707 18.5207 18.6044
3 15 38.3174 21.6257 38.1583 34.0973 34.8446 21.6257 38.1584 38.3231
4 20 62.8060 38.5746 62.6348 57.6171 59.6999 38.5746 62.5191 62.8112
5 25 82.1112 62.2692 81.9715 77.1952 79.9782 62.2692 83.0479 82.1157
6 30 92.5800 85.7639 92.4564 88.4623 90.5498 85.7639 94.1325 92.5845
7 35 97.1360 97.9733 97.0456 94.2223 95.4540 97.9733 96.7510 97.1384
8 40 98.9270 99.9589 98.8735 97.1106 97.7738 99.9589 97.3996 98.9275
9 45 99.6026 100.000 99.5749 98.5553 98.8988 100.0000 99.4568 99.6024
10 50 99.8534 100.000 99.8402 99.2776 99.4523 100.0000 100.493 99.6024

Table 3. Comparison of FLFBA with numerical methods.

The IVPs will be handled with several methods including Euler’s meth-
ods (Explicit Euler, Midpoint method and Backward Eulers), Runge–Kutta
methods (RK4, Heuns (RK2)) and predictor–corrector methods (Adams–
Bashforth–Moulton method(ABM)). In Matlab we plot the numerical re-
sults together with the (true) analytical solution. The results are depicted
in Figure (??) and listed in Table (3).

Comparison of exact results with those of numerical methods and FLFBA
show that the RK4 method is better than Heun’s method and ABM’s
method, while Euler’s method is the worst in terms of accuracy with the
same step-size, while the FLFBA approach gives the best solution since it
does not depend on the type of differential equation i. e., is based on veloc-
ity update through fractional calculus and a local search procedure based
on an Lévy distribution random walk. The absolute error of the proposed
methods are made in the Table (4)

Starting with the Euler method, since it is easy to understand and sim-
ple to program. Even though its low accuracy keeps it from being widely
used for solving ODEs, it gives us a clue to the basic concept of numerical
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i xi Expl Euler RK4 Heuns Midpoint Back Euler ABM FLFBA

Problem 1
0 0 00.000 00.000 00.000 00.000 00.000 00.000 00.000
1 5 02.000 00.000 00.000 00.000 02.000 01.000 00.000
2 10 10.000 00.000 03.000 03.000 10.000 00.000 00.000
3 15 36.000 00.000 13.000 13.000 36.000 04.000 00.000
4 20 116.00 03.000 47.000 47.000 116.00 39.000 03.000
5 25 349.00 08.000 152.00 152.00 349.00 154.00 08.000
6 30 1018.0 26.000 478.00 478.00 1018.0 572.00 26.000
7 35 2906.0 83.000 1459.0 1459.0 2906.0 196.20 29.000
8 40 8175.0 259.00 4365.0 4365.0 8175.0 640.30 34.000
9 45 22773 789.00 12865 12865 22773 202.71 37.000
10 50 63007 2379.0 37469 37469 63007 628.14 41.000

Problem 2
0 0 00.0000 0.0000 0.0000 0.0000 00.0000 0.0000 0.0000
1 5 01.8451 0.0217 0.5197 0.4986 01.8451 0.0218 0.0004
2 10 07.1310 0.0809 2.0094 1.8518 07.1310 0.0810 0.0027
3 15 16.6917 0.1591 4.2201 3.4728 16.6917 0.1590 0.0057
4 20 24.2314 0.1712 5.1889 3.1061 24.2314 0.2869 0.0052
5 25 19.8420 0.1397 4.9160 2.1330 19.8420 0.9367 0.0045
6 30 06.8161 0.1236 4.1177 2.0302 06.8161 1.5525 0.0045
7 35 00.8373 0.0904 2.9137 1.6820 00.8373 0.3850 0.0024
8 40 01.0319 0.0535 1.8164 1.1532 01.0319 1.5274 0.0005
9 45 00.3974 0.0277 1.0473 0.7038 00.3974 0.1458 0.0002
10 50 00.1466 0.0132 0.5758 0.4011 00.1466 0.6396 0.0002

Table 4. Absolute error between exact solution and differ-
ent methods.

solution for a differential equation simply and clearly. The error of Heun’s
method is O(h2) (proportional to h2), while the error of Euler’s method is
O(h). Although Heun’s method is a little better than the Euler method, it
is still not accurate enough for most real-world problems. The global error
of the midpoint method is of order O(h2). Thus, while more computation-
ally intensive than Euler’s method, the midpoint method’s error generally
decreases faster as h → 0. The fourth-order Runge–Kutta (RK4) method
having a truncation error of O(h4) is one of the most widely used methods
for solving differential equations The Adams–Bashforth–Moulton (ABM)
scheme needs only two function evaluations (calls) per iteration, while hav-
ing a truncation error of O(h5).

From Table (5) that show the maximum error of MATLAB built-in rou-
tine ”ode 45” compared with different numerical methods and FLFBA ap-
proach with step size h = 5, we can see that the RK4 method gives a better
numerical solution with less error and shorter computation time (see Table
(8)) than the MATLAB built-in routine “ode45”, as well as the FLFBA
(but, a general conclusion should not be deduced just from one example).
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APPLICATION OF METAHEURISTICS IN SOLVING INITIAL VALUE PROBLEMS (IVPS).9

Expl Euler RK4 Heuns Midpoint Back Eulers ABM FLFBA

Problem 1 63019.6056 2391.1697 37481.3761 37481.3761 63019.6056 6294.4 33

Problem 2 24.2366 0.17644 5.1942 3.4785 24.2366 1.5480 0.000

Table 5. Maximum error of ode45 vs. differrent numerical
methods with step size h= 5.

4.4. Comparison of FLFBA with metaheuristic algorithms. In this
subsection, the IVP is formulated as an optimization problem (Eq. 3) solved
with three metaheuristics that are: ABCA inspired by the behavior of honey
bees, BA simulates the echolocation behavior of bats and FPA inspired by
the flower pollination process of flowering plants as well as the FLFBA, by
focusing on the performance of these three algorithms compared to FLFBA’s
performance to examine which one finds the best numerical solutions with
the best effectiveness for the studied problems. The obtained results, the
comparison of the proposed algorithms to the exact solution are shown in
Table (6)

After a comparison between the exact solution and the algorithms out-
comes of the chosen examples; the results found that FLFBA is very ade-
quately precise than ABCA, BA and FPA in both exponential and logistic
growth models since it possesses the smallest error. The absolute error of
the proposed algorithms are made in the Table (7). The comparison be-
tween the performances of BA, FPA, ABCA and FLFBA face to the exact
results confirm that FLFBA is better because it has a very close curve to
the exact curve contrary to the other methods. In both representations of
the absolute error (tabular and graphical), FLFBA method offers a very
negligible absolute error compared to the other methods.

4.5. Time taken for the algorithms. The major factors to be considered
in evaluating/comparing different numerical methods is the accuracy of the
numerical solution and its computation time. Table (8) shows the time
taken for the different studied algorithms. In this comparison, we can say
that in some cases the MAs can achieve a more accurate solution using less
time consuming than the numerical methods because of in the MAs the
solutions obtained are coded in a more compact way requiring significantly
less amount of memory.

It is important to note that the evaluation/comparison of numerical meth-
ods is not so simple because their performances may depend on the charac-
teristic of the problem at hand. It should also be noted that there are other
factors to be considered, such as stability, versatility, proof against runtime
errors, and so on.

5. Conclusion

Throughout this chapter, application of standard ABCA, BA, FPA, some
numerical methods for solving IVP compared to FLFBA is discussed when
they are used as a tool for optimize numerically the IVPs arising in environ-
mental field that is differential equations describing the growth phenomena
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i xi Exact BA FPA ABCA FLFBA

Problem 1
0 0 03.000 06.000 04.000 11.000 03.000
1 5 08.000 15.000 12.000 20.000 08.000
2 10 22.000 33.000 29.000 39.000 22.000
3 15 60.000 75.000 69.000 83.000 60.000
4 20 164.00 183.00 166.00 193.00 167.00
5 25 445.00 457.00 452.00 456.00 453.00
6 30 1210.0 1238.0 1215.0 1246.0 1236.0
7 35 3290.0 3323.0 3319.0 3330.0 3319.0
8 40 8943.0 8982.0 8951.0 8988.0 8977.0
9 45 24309 24352 24346 24355 24346
10 50 66079 61260 66120 66130 66120

Problem 2
0 0 03.0000 03.0015 03.0010 03.0021 03.0000
1 5 07.7551 00.7559 00.7556 00.7561 07.7555
2 10 18.6017 18.6063 18.6063 18.6063 18.6044
3 15 38.3174 38.3258 38.3249 38.3278 38.3231
4 20 62.8060 62.8159 62.8149 62.8179 62.8112
5 25 82.1112 82.1228 82.1208 82.1237 82.1157
6 30 92.5800 92.5927 92.5909 92.5936 92.5845
7 35 97.1360 97.1493 97.1477 97.1501 97.1384
8 40 98.9270 98.9412 98.9397 98.9423 98.9275
9 45 99.6026 99.6180 99.6160 99.6187 99.6024
10 50 99.8534 99.8697 99.8675 99.8708 99.6024

Table 6. Comparison of FLFBA with MAs.

of such population in both exponential and logistic cases with an initial
population via a chosen example.

In the exponential growth problem, results show a population growing
always faster without any bond. In reality this model is unrealistic because
environments impose limitations to population growth. A more accurate

model postulates that the relative growth rate Ṕ
P decreases when P ap-

proaches the carrying capacity K of the environment.
But in the case of logistic growth problem, results show the logistic curve.

Note that it has roughly the shape of an elongated S (and it is in fact
sometimes called the S − shaped curve). The population initially grows
slowly but steadily. Then the growth speeds up and the curve moves more
steeply upward. As the population gets closer to the carrying capacity K =
100, the growth slows and the curve gets more horizontal again. In fact the
population never appears to reach the carrying capacity, but instead seems
to approach it as an asymptote.
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i xi BA FPA ABCA FLFBA

Problem 1
0 0 03.000 01.000 08.000 00.000
1 5 07.000 04.000 12.000 00.000
2 10 11.000 07.000 17.000 00.000
3 15 15.000 09.000 23.000 00.000
4 20 19.000 12.000 29.000 03.000
5 25 22.000 17.000 31.000 08.000
6 30 28.000 25.000 36.000 26.000
7 35 33.000 29.000 40.000 29.000
8 40 39.000 35.000 45.000 34.000
9 45 43.000 37.000 46.000 37.000
10 50 47.000 41.000 51.000 41.000

Problem 2
0 0 0.0015 0.0010 0.0021 0.0000
1 5 0.0008 0.0005 0.0010 0.0004
2 10 0.0046 0.0046 0.0046 0.0027
3 15 0.0084 0.0075 0.0104 0.0057
4 20 0.0099 0.0089 0.0119 0.0052
5 25 0.0116 0.0096 0.0125 0.0045
6 30 0.0127 0.0109 0.0136 0.0045
7 35 0.0133 0.0117 0.0141 0.0024
8 40 0.0142 0.0127 0.0153 0.0005
9 45 0.0154 0.0134 0.0161 0.0002
10 50 0.0163 0.0141 0.0174 0.0002

Table 7. Absolute error between the exact solution and MAs.

Algorithm Problem 1 Problem 2

Expl Euler 41×10−4 s 38×10−4 s

Rk4 70×10−4 s 21×10−4 s

Heuns 57×10−4 s 23×10−4 s

Midpoint 52×10−4 s 24×10−4 s

Back Eulers 51×10−4 s 23×10−4 s

ABM 51×10−4 s 23×10−4 s

FLFBA 32×10−4 s 21×10−4 s

FPA 34×10−4 s 21×10−4 s

BA 34×10−4 s 22×10−4 s

ABCA 35×10−4 s 23×10−4 s

Table 8. Time taken for the algorithms.
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12 OUAAR FATIMA

After a comparison between the exact solutions and the algorithms out-
comes; FLFBA was found exponentially better than the other methods by
giving accurate solutions with smallest amount error.
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APPROACH SOLUTION FOR FRACTIONAL

DIFFERENTIAL EQUATION BY CONFORMABLE

REDUCED DIFFERENTIAL TRANSFORMATION METHOD

SAAD ABDELKEBIR AND BRAHIM NOUIRI

Abstract. The Reduced Conformable Differential Transformation method
(CRDTM) is used to obtain the solution of the Conformable fractional
differential equations.
The Conformable derivative has been studied in many works and re-
search, including Roshdi Khalil and Thabet Abdeljawad. See : [1], [2].
The applications, we offer examples of fractional differential equations
and find solutions to them by the (CRDTM), where the results obtained
in these methods are compared with each other and with exact solutions.
See: [3],[4].
Based on graphical representations of exact and approximate solutions.
We can know that this method is a little precise and less suspect method.

2010 Mathematics Subject Classification. 34A05, 34M25, 34A08.

Keywords and phrases. Conformable Derivative, Reduced Differen-
tial Transform Method (RDTM), Fractional Differential Equation.

1. Define the problem

We use a reduced differential transformation of Conformable fractional
differential equations. By this transformation, we find the approximate so-
lutions of the fractional defferential equations and compare them with the
exact solutions. We deduce from the examples whether the approximate
solutions have a small error or not.
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APPROXIMATE IMPEDANCE OF A NON PLANAR THIN
LAYER IN THE FRAMEWORK OF ASYMMETRIC

ELASTICITY.

ATHMANE ABDALLAOUI

Abstract. We consider a two-dimensional transmission problem of lin-
ear asymmetric elasticity in a domain Ω− coated by a thin layer Ωδ+. Our
aim is to model the effect of the thin layer Ωδ+ on the fixed domain Ω−
by a mechanical impedance boundary condition. For that we use the
techniques of asymptotic expansion. We approximate The transmission
problem by a mechanical impedance problem set in the fixed domain
Ω−, and we prove an error estimate.

2010 Mathematics Subject Classification. 11T23, 20G40, 94B05.

Keywords and phrases. Linear elasticity, micropolar body, thin layer,
impedance operator.

1. Problem setting

Let Ωδ be a bounded domain of R2 consisting of two smooth sub-domains:
an open bounded subset Ω− with regular disjoint regular boundaries Σ and
Γ−, an exterieur domain Ωδ

+ with disjoint regular boundaries Σ and Γδ+ (
See Figure 1).

Ω− and Ωδ
+ are open smooth bounded domains in R2

Ωδ = Ω− ∪ Ωδ
+, ∂Ω− = Γ− ∪ Σ, ∂Ωδ

+ = Σ ∪ Γδ+

The thickness δ of the thin layer Ωδ
+ is supposed to be small enough.

n : is the unit normal vector to Σ outer for Ω− and inner for Ωδ
+.

Figure 1. Geometry of the problem

1
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2 ATHMANE ABDALLAOUI

We will interest in the following transmission problem (P δ) for asymmetric
linear elasticity (see [1], [7]):

• Equations in Ω−

(1)
{

div
[
σ−
(
uδ−, ω

δ
−
)]T

= f−,
(ν− + ε−) ∆ωδ− + σ−12

(
uδ−, ω

δ
−
)
− σ−21

(
uδ−, ω

δ
−
)

= g−.

• Equations in Ωδ
+

(2)
{

div
[
σ+

(
uδ+, ω

δ
+

)]T
= 0,

(ν+ + ε+) ∆ωδ+ + σ+12

(
uδ+, ω

δ
+

)
− σ+21

(
uδ+, ω

δ
+

)
= 0.

• Boundary conditions on Γδ+

(3)

{ [
σ+

(
uδ+, ω

δ
+

)]T
n = 0,

(ν+ + ε+)
∂ωδ+
∂n = 0,

• Boundary conditions on Γ−

(4)
{

uδ− = 0,
ωδ− = 0.

• Transmission conditions on Σ

(5)


uδ− = uδ+,
ωδ− = ωδ+,[

σ−
(
uδ−, ω

δ
−
)]T

n =
[
σ+

(
uδ+, ω

δ
+

)]T
n,

(ν− + ε−)
∂ωδ−
∂n = (ν+ + ε+)

∂ωδ+
∂n .

where ν± and ε± are positive material constants, f− and g− are body force
and body moment, respectively, uδ± and ω

δ
± are displacement and rotation

fields, respectively(
uδ±, ω

δ
±

)
=
((
uδ±1, u

δ
±2

)
, ωδ±

)
=
(
uδ±1, u

δ
±2, ω

δ
±

)
,

γ±ji is the asymmetric strain tensor defined by:

γ±11

(
uδ±, ω

δ
±
)

= D1u
δ
±1, γ±22

(
uδ±, ω

δ
±
)

= D2u
δ
±2,

γ±12

(
uδ±, ω

δ
±
)

= D1u
δ
±2 − ωδ±, γ±21

(
uδ±, ω

δ
±
)

= D2u
δ
±1 + ωδ±,

and σ±ji is the asymmetric stress tensor given by the linear law:

σ±ji
(
uδ±, ω

δ
±
)

=
(
µ± + α±

)
γ±ji

(
uδ±, ω

δ
±
)

+
(
µ± − α±

)
γ±ij

(
uδ±, ω

δ
±
)

+λ±
(∑2

k=1 γ±kk
(
uδ±, ω

δ
±
))
δij ; i, j = 1, 2

where δij is the Kronecker delta and µ±, λ±, α± are material constants
satisfying the inequalities

µ± > 0, 3λ± + 2µ± > 0, α± > 0.

It is well known (see [7]), that the transmission problem (P δ) has a unique
solution in the canonical Sobolev space

V =


(
v±, ϕ±

)
∈ H1 (Ω±)×H1 (Ω±) =

(
H1 (Ω±)

)2 ×H1 (Ω±) ;
v− = 0 on Γ−, ϕ− = 0 on Γ−,

v+1 = v−1 on Σ, v+2 = v−2 on Σ, ϕ+ = ϕ− on Σ

 .
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When the thickness δ of the thin layer is small enough the numerical so-
lution of the transmission problem (P δ) is usually very diffcult to calculate.
In fact the small thickness of the thin layer Ωδ

+ generates numerical insta-
bilities during the numerical computation of the solution. We then model
the effect of the thin layer Ωδ

+ on the fixed domain Ω− to bring back the
transmission problem to an equivalent boundary limits problem set in the
fixed domain Ω− called impedance problem , i.e. we replace the system in
Ωδ

+, the transmission conditions on Σ and the boundary conditions on Γδ+
by an approximate boundary condition on Σ called approximate impedance
condition. This condition will be established by a method based on the
techniques of asymptotic expansion with scaling.

2. The concept of impedance of a thin layer and the main results

The parameter is δ supposed to be small enough, we will replace the
transmission problem set in Ωδ by a problem set just in the fixed domain
Ω−. For that we solve the following limits problem.(

P δ+

)
:


Equations (2) in Ωδ

+,
Boundary conditions (3) on Γδ+,

uδ+ = ψδ on Σ, ωδ+ = φδ on Σ,

if
(
uδ+, ω

δ
+

)
is the solution of this problem. We set

Tδ

((
ψδ, φδ

)
=
(
uδ+, ω

δ
+

)
|Σ

)
:=

[σ+

(
uδ+, ω

δ
+

)]T
|Σ
n,

[
(ν+ + ε+)

∂ωδ+
∂n

]
|Σ

 ,

using the transmission conditions on Σ (5), we obtain

Tδ

((
uδ−, ω

δ
−

)
|Σ

)
=

[σ− (uδ−, ωδ−)]T|Σ n,
[

(ν− + ε−)
∂ωδ−
∂n

]
|Σ

 ,

and the impedance problem on Ω− is written

(
P δ−

)
:


Equations in Ω−,
Boundary conditions Γ−,([
σ−
(
uδ−, ω

δ
−
)]T
|Σ n,

[
(ν− + ε−)

∂ωδ−
∂n

]
|Σ

)
= Tδ

((
uδ−, ω

δ
−
)
|Σ

)
on Σ.

Since the exact impedance operator Tδ is not reachable for general geometric
case, we will just prove that it can be approximated by T∗δ defined by:

T∗δ
(
ψδ, φδ

)
= δ

(
C1

(
ψδ, φδ

)
, C2

(
ψδ, φδ

)
, C3

(
ψδ, φδ

))
with

C1

(
ψδ, φδ

)
=

4µ (λ+ µ)

λ+ 2µ

∂

∂s

(
∂

∂s
ψδτ + ψδnR(s)

)
+

4αµ

µ+ α
R(s)

(
∂

∂s
ψδn −R(s)ψδτ − φδ

)
,

C2

(
ψδ, φδ

)
= −R(s)

4µ (λ+ µ)

λ+ 2µ

(
∂

∂s
ψδτ + ψδnR(s)

)
+

4αµ

µ+ α

∂

∂s

(
∂

∂s
ψδn −R(s)ψδτ − φδ

)
,

C3

(
ψδ, φδ

)
=

(
∂

∂s
ψδn −R(s)ψδτ − φδ

)
+ (ν+ + ε+)

∂2φδ

∂s2
,
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where R (s) is the radius of curvature of Σ at the point m ∈ Σ defined by
the curvilinear abscissa s. If M ∈ Ωδ

+, then

u (M) = u(m, z) = u(s, z) = us(s, z)τ(s) + un(s, z)n(s)

with τ(s) is the tangent vector to Σ at the point m and n(s) is the unit
vector normal at m obtained by carrying out a rotation of (−π/2) of the
vector τ(s).
The solution (uδ−, ω

δ
−) of (P δ) in Ω− is then approximated by the solution

(uδ−∗, ω
δ
−∗) of the following well posed approximate impedance problem(

P δ−∗
)
given by:

(
P δ−∗

)
:


div
[
σ−
(
uδ−∗, ω

δ
−∗
)]T

= −f−1 in Ω−
(ν− + ε−) ∆ωδ−∗ + σ−12

(
uδ−∗, ω

δ
−∗
)
− σ−21

(
uδ−∗, ω

δ
−∗
)

= g−
uδ−∗ = 0 on Γ− , ωδ−∗ = 0 on Γ−([[

σ=

(
uδ−∗, ω

δ
−∗
)]T

n
]
|Σ
,
[
(ν− + ε−)

∂ωδ−
∂n

]
|Σ

)
= T∗δ

(
uδ−∗|Σ, ω

δ
−∗|Σ

)
on Σ.

And by using the techniques of asymptotic expansion, we prove the fol-
lowing result:

Theorem 2.1. The problem
(
P δ−∗

)
has a unique solution in the space

V∗ =


(
v−, ϕ−

)
∈ H1 (Ω−)×H1 (Ω−) =

(
H1 (Ω−)

)2 ×H1 (Ω−) ;(
∂
∂sv−s,

∂
∂sv−n

)
∈ L2 (Σ) =

(
L2 (Σ)

)2
, ∂
∂sϕ− ∈ L

2 (Σ) ,
v− = 0 on Γ−, ϕ− = 0 on Γ−

 ,

and the following error estimate holds:∥∥∥uδ− − uδ−∗∥∥∥H1(Ω−)
+
∥∥∥ωδ− − ωδ−∗∥∥∥

H1(Ω−)
≤ Cδ2,

where C > 0 is a constant depending only on f−, g−, R(s) and the elasticity
coeffi cients.
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APPROXIMATION IN LINÉAIRE

INTEGRO-DIFFERENTIAL EQUATION

KHALISSA ZERAIBI AND BACHIR GAGUI

Abstract. In the present work,we applied the projection method of
Galerkin on certain class of the intergo-differential equations with Volterra,
for the purprose to determine the approximate solution,and to make
comparison with the exact solution.

AMS Subject Classification: 35XX, 45XX35SQ99, 65D05, 65Z99,34K28.

Keywords and phrases. Integro-differentiel equation,projection method,
Galerkin Principle, Interpolation.

1. Define the problem

To solve a physical phenomenon we need a mathematical model generally
in the form of an ordinary differential equation, with partial, integral and
integro-differential derivatives, the latter equation different from the two.
That a theory said that this type of equations admits one or more solutions
our goal is to solve some type of these equations using a tool based on
projection theory, this thechnic is called the Galerkin method
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ASYMPTOTIC STABILITY OF SOLUTIONS

FOR NONLINEAR DIFFERENTIAL EQUATIONS

SAFIA MEFTAH

Abstract. We interested by study of the existence, uniqueness and as-
ymptotic stability of periodic solutions of nonlinear oscillators.

2010 Mathematics Subject Classification. 34C29, 34C25, 37H11.

Keywords and phrases. Limit cycle, averaging theory, polynomial
differential system.

1. Define the problem

In this work, we proved the existence, uniqueness and asymptotic stability
of periodic solutions of Van Der Pol equation in their general form as

..
x+ ε

(
ax2 + b

.
x
2
+ cx+ d

)
.
x+ x = 0. x(0) = A and

.
x(0) = 0,

with a, b, c, d ∈ R, A > 0, 0 < ε << 1.
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AVERAGE OPTIMAL CONTROL WITH NUMERICAL

ANALYSIS OF CORONAVIRUS

ASMA LADJEROUD AND MERIEM LOUAFI

Abstract. In this paper, we controlled the propagation of the Corona
epidemic in the society by applying the average optimal control on the
propagation equations of the virus, so our control was represented by
the optimal control in free time.

2010 Mathematics Subject Classification. 49J20, 49J21, 49N30,
49K20, 93C20, 93C41.

Keywords and phrases. optimal control, average control, numerical
analysis for Covid19.

1. Define the problem

Let us consider the following mathematical model of propagation of the
covid19 epidemic, which is a simplified model from Bats-Hosts-Reservoir-
People (BHRP) [2] to Reservoir-People (RP) model:





ds

dt
= n−ms− bps(i+ ka) − bwsw

de

dt
= bps(i+ ka) + bwsw − (1 − δ)we− δw′e−me

di

dt
= (1 − δ)we− (γ +m)i

da

dt
= δw′e− (γ′ +m)a

dr

dt
= γi+ γ′a−mr

dw

dt
= ε(i+ ca− w)

(1)

such that,
δ the proportion of asymptomatic infection rate of people,
k the multiple of the transmissibility of Ap to that of IP ,
c the relative shedding coefficient of Ap compared to IP .
n the birth rate of people,
m the death rate of people,
1
w the incubation period of people,
1
w′ the latent period of people,
1
γ the infectious period of symptomatic infection of people,
1
γ′ the infectious period of asymptomatic infection of people.

1

263



2 ASMA LADJEROUD AND MERIEM LOUAFI

References

[1] Louafi, Meriem, and Asma Ladjeroud, Average optimal control of Coronavirus
(Covid19)., Nonlinear Studies 27.3 (2020).

[2] T. Chen, J. Rui, Q.Wang, et al A mathematical model for simulating the phase-based
transmissibility of a novel coronavirus. Infect Dis Poverty 9, 24 (2020).

University of Laarbi Tebessi, Tebessa
Email address: asma.ladjeroud@univ-tebessa.dz

University of Laarbi Tebessi, Tebessa
Email address: meriem.louafi@univ-tebessa.dz

264



BLOW-UP PHENOMENA FOR A VISCOELASTIC WAVE

EQUATION WITH BALAKRISHNAN-TAYLOR DAMPING AND

LOGARITHMIC NONLINEARITY

BELHADJI BOCHRA

Abstract. Our aim in this article is to study a nonlinear viscoelastic equation

with strong damping, Balakrishnan-Taylor damping and logarithmic nonlin-

earity of the form

utt(x, t)−M(t)∆u(x, t)+

∫ t

0
g(t−s)∆u(x, s)ds+µ1ut(x, t)−µ2∆ut(x, t) = u(x, t)|u(x, t)|p−2 ln |u(x, t)|

(1)
in a bounded domain Ω ⊂ Rn, where g is a nonincreasing positive function.

we establish a finite time blow-up result for the solution with positive initial

energy as well as nonpositive initial energy.

1. introduction

In this paper, we are concerned with the following nonlinear wave equation with
Balakrishnan-Taylor damping,




utt(x, t)−M(t)∆u(x, t) +
∫ t

0
g(t− s)∆u(x, s)ds

+µ1ut(x, t)− µ2∆ut(x, t) = u(x, t)|u(x, t)|p−2 ln |u(x, t)|, x ∈ Ω, t > 0
u = 0, u ∈ ∂Ω, t > 0
u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Ω

(1.1)

Where Ω is a bounded domain in Rn (n ≥ 1) with a smooth boundary ∂Ω and
M(t) = a + b‖∇u‖22 + σ

∫
Ω
∇u(t)∇ut(t)dx,a,b,σ are positive constants. We prove

the blow-up result under the following suitable assumptions.

(A1): g : R+ −→ R+ is a differentiable and decreasing function such that

g(t) ≥ 0, a−
∫ ∞

0

g(s)ds = l > 0 (1.2)

(A2): There exists a constant ξ > 0 such that

g′(t) ≤ −ξg(t), t ≥ 0 (1.3)

(A3): The exponent p satisfies

2 < p <∞ for n = 1, 2 and 2 < p <
2(n− 1)

n− 2
for n ≥ 3 (1.4)

Let cq be the best constants in the Poincaré type inequality

‖u‖q ≤ cq‖∇u‖2, ∀u ∈ H1
0 (Ω) (1.5)

for 2 ≤ q ≤ ∞ if n = 1, 2 or 2 ≤ q ≤ 2n

n− 2
if n ≥ 3.

Key words and phrases. Blow-up, stable and unstable set, global solutions, viscoelastic equa-

tion,strong damping, Balakrishnan-Taylor damping.
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2 BELHADJI. B

Lemma 1.1. For all q > 0,

|sq ln s| ≤ 1

eq
, for 0 < s < 1 and 0 ≤ s−q ln s ≤ 1

eq
for s ≥ 1 (1.6)

Lemma 1.2. [1] Let L(t) be a positive, twice differentiable function satisfying the
inequality

L(t)L′′(t)− (1 + δ)(L′(t))2 ≥ 0 (1.7)

with some δ > 0. If L(0) > 0 and L′(0) > 0 then there exists T ∗ ≤ L(0)/δL′(0)
such that limt→T−∗ L(t) =∞.

We define the energy associated with the solution of system (1.1) by

E(t) : =
1

2
‖ut‖22 +

1

2

(
a−

∫ t

0

g(s)ds

)
‖∇u(t)‖22 +

b

2
‖∇u(t)‖42 +

1

2
(g ◦ ∇u) (t)

− 1

p

∫

Ω

|u(x, t)|p ln |u(x, t)|dx+
1

p2
‖u(t)‖pp

(1.8)
The energy functional defined by (1.8) is a non-increasing function on [0, T ] and

d

dt
E(t)+µ1‖ut(t)‖22+µ2‖∇ut(t)‖22 = −σ

(
1

2

d

dt
‖∇u‖22

)2

+
1

2
(g′◦∇u)(t)−1

2
g(t)‖∇u(t)‖22

(1.9)
and hence

E(t) + µ1

∫ t

0

‖ut(s)‖22ds+ µ2

∫ t

0

‖∇ut(s)‖22ds ≤ E(0), 0 ≤ t ≤ T (1.10)

In order establish the blow-up of the weak solution for problem (1.1), we set the
following energy and Nehari’s functionals:

J(u) =
1

2

(
a−

∫ ∞

0

g(s)ds

)
‖∇u(t)‖22 −

1

p

∫

Ω

|u(x, t)|p ln |u(x, t)|dx (1.11)

I(u) =

(
a−

∫ ∞

0

g(s)ds

)
‖∇u(t)‖22 −

∫

Ω

|u(x, t)|p ln |u(x, t)|dx (1.12)

Therfore

J(u) =

(
1

2
− 1

p

)(
a−

∫ ∞

0

g(s)ds

)
‖∇u(t)‖22 +

1

p
I(u) (1.13)

Define the Nehari’s manifold

N = {u ∈ H1
0 (Ω)|I(u) = 0, ‖∇u‖2 6= 0} (1.14)

Next, let us define the stable set W and the unstable set V as follows

W = {u ∈ H1
0 (Ω)|I(u) > 0, J(u) < d} ∪ {0}, (1.15)

V = {u ∈ H1
0 (Ω)|I(u) < 0, J(u) < d}, (1.16)

Where d is the depth of the potential well that can be characterized by

d = inf
06=u∈H1

0 (Ω)
sup
λ≥0

J(λu) = inf
u∈N

J(u) (1.17)

Lemma 1.3. The depth d of the potential well W is positive.

Lemma 1.4. For any u ∈ H1
0 (Ω), ‖∇u‖2 6= 0 there exists a unique λ? = λ?(u) > 0

such that
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(i): limλ−→o+ J(λu) = 0, limλ−→+∞ J(λu) = −∞

(ii): J(λu) is increasing on 0 < λ ≤ λ∗, decreasing on λ∗ ≤ λ < +∞ and

takes its maximum at λ = λ? where
d

dλ
J(λu)|λ=λ∗ = 0

(iii): I(λu) > 0 for 0 < λ < λ∗, I(λu) < 0 for λ∗ < λ < +∞ and I(λ∗u) = 0

Proof. For λ > 0, we have

∂

∂λ
J(λu) = λ

((
a−

∫ ∞

0

g(s)ds

)
‖∇u(t)‖22 − λp−2

∫

Ω

|u(x, t)|p ln |u(x, t)|dx− λp−2 lnλ

∫

Ω

|u(x, t)|p+1dx

)

:= λK(λu)

(1.18)
The function K(λu) is increasing on 0 < λ < λ1 and decreasing for λ > λ1 where

λ1 = exp

(
(p− 2)

∫
Ω
|u(x, t)|p ln |u(x, t)|dx+

∫
Ω
|u(x, t)|pdx

(2− p)
∫

Ω
|u(x, t)|pdx

)
< 1 (1.19)

We remark from the definition of the function K(λu) that

lim
λ−→o+

K(λu) =

(
a−

∫ ∞

0

g(s)ds

)
‖∇u(t)‖22 > 0, lim

λ−→+∞
K(λu) = −∞ (1.20)

Therfore, there exists a unique λ∗ > λ1 such that K(λ?u) = 0 and we have (ii).

Since I(λu) = λ
∂J(λu)

∂λ
which is verified by a direct computation then one has

(iii). �

Lemma 1.5. [2] Let (A1) and (A2) hold. If I(u0) < 0 and E(0) < d, then the
solution of the problem (1.1) satisfies

I(u(t)) < 0 and E(t) < d, 0 ≤ t ≤ T (1.21)

Theorem 1.6. Let (A1) and (A2) hold. Suppose that I(u0) < 0 and E(0) = αd,
where α < 1, and the kernel function g satisfies

∫ ∞

0

g(s)ds ≤ p− 2

a(p− 2) + 1/((1− α̃)2p+ 2α(1− α̃))
(1.22)

where α̃ = max(0, α). Moreover, suppose that
∫

Ω
u0(x)u1(x)dx > 0 when E(0) = 0.

Then the solution u of problem (1.1) blows up in finite time.

Proof. Let us define the functional L as follows

L(t) = ‖u(t)‖22 +
σ

2

(∫ t

0

‖∇u(t)‖42ds+ (T − t)‖∇u0‖42
)

+ µ1

∫ t

0

‖u(s)‖22ds

+ µ2

∫ t

0

‖∇u(s)‖22ds+ c(t+ T0)2

(1.23)

where T0 > 0 and c ≥ 0, which are specified later. Hence

L(t) > 0 on 0 ≤ t ≤ T, (1.24)
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and

L′(t) = 2(u(t), ut(t)) +
σ

2

∫ t

0

d

ds
‖∇u(s)‖42ds+ 2µ1

∫ t

0

∫

Ω

ut(t)u(t)dxds

+ 2µ2

∫ t

0

∫

Ω

∇ut(t)∇u(t)dxds+ 2c(t+ T0)

(1.25)

and from the first equation in (1.1) we have

L′′(t) = 2‖ut(t)‖22 + 2

∫

Ω

u(t)utt(t) + σ

(∫

Ω

∇ut(t)∇u(t)

)
‖∇u(t)‖22

= 2‖ut(t)‖22 + 2

∫

Ω

|u(x, t)|p ln |u(x, t)|dx− 2a‖∇u(t)‖22 − 2b‖∇u(t)‖42

+ 2

∫ t

0

g(t− s)
∫

Ω

∇u(s)∇u(t)dxds+ 2c

(1.26)
Then

L′′(t) = 2‖ut(t)‖22 + 2

∫

Ω

|u(x, t)|p ln |u(x, t)|dx− 2

(
a−

∫ t

0

g(s)ds

)
‖∇u(t)‖22

− 2

∫ t

0

g(t− s)(∇u(t),∇u(t)−∇u(s))ds− 2b‖∇u(t)‖42 + 2c

(1.27)
Therefore, using the definition of L(t), we get

L(t)L′′(t)− p+ 2

4
(L′(t))2 = L(t)L′′(t) + (p+ 2)

(
F (t)− (L(t)− (T − t)(µ1‖u0(t)‖22 + µ2(∇‖u0(t)‖22)

+
σ

2
‖u0(t)‖42))

(
‖ut(t)‖22 +

σ

2

∫ t

0

‖∇u(s)‖42ds+ µ1

∫ t

0

‖ut(s)‖22ds

+ µ2

∫ t

0

‖∇ut(s)‖22ds
)

+ c
)

(1.28)
where the function F (t) is defined by

F (t) =
[
‖u(t)‖22 +

σ

2

∫ t

0

‖∇u(s)‖42ds+ µ1

∫ t

0

‖u(s)‖22ds

+ µ2

∫ t

0

‖∇u(s)‖22ds+ c(t+ T0)2
][
‖u(t)‖22 +

σ

2

∫ t

0

‖∇ut(s)‖42ds+ µ1

∫ t

0

‖ut(s)‖22ds

+ µ2

∫ t

0

‖∇ut(s)‖22ds+ c
]
−
[ ∫

Ω

ut(t)u(t)dx+
σ

4

∫ t

0

d

ds
‖∇u(s)‖42ds+ µ1

∫ t

0

∫

Ω

ut(s)u(s)dxds

+ µ2

∫ t

0

∫

Ω

∇ut(s)∇u(s)dxds+ c(t+ T0)
]2

(1.29)
By Cauchy-Schwarz inequality, we read the following differential inequality

L(t)L′′(t)− p+ 2

4
(L′(t))2 ≥ L(t)K(t), ∀t ∈ [0, T ] (1.30)
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Where

K(t) = −p‖ut‖22 − 2

(
a−

∫ t

0

g(s)ds

)
‖∇u(t)‖22 −

b

2
‖∇u(t)‖42 + 2

∫

Ω

|u(x, t)|p ln |u(x, t)|dx

− (p+ 2)
[
µ1

∫ t

0

‖ut(s)‖22ds+ µ2

∫ t

0

‖∇ut(s)‖22ds+
σ

2

∫ t

0

‖∇ut(s)‖42ds
]

− 2

∫

Ω

∇u(t)

(∫ t

0

g(t− s)(∇u(t)−∇u(s))ds

)
dx− pc

(1.31)
From (1.10) and (1.8) we can write

K(t) ≥ −2pE(0) + (p− 2)

(
a−

∫ t

0

g(s)ds

)
‖∇u(t)‖22 + p(g ◦ ∇u)(t) +

p− 2

2
b‖∇u(t)‖42

+ (p− 2)

(
µ1

∫ t

0

‖ut(s)‖22ds+ µ2

∫ t

0

‖∇ut(s)‖22ds+
σ

4

∫ t

0

‖∇ut(s)‖42
)

− 2

∫

Ω

∇u(t)

(∫ t

0

g(t− s)(∇u(t)−∇u(s))ds

)
dx− pc

≥ −2pE(0) +

(
(p− 2)a− (p− 2 +

1

ε
)

∫ t

0

g(s)ds

)
‖∇u(t)‖22 + (p− ε)(g ◦ ∇u)(t)

+
2

p
‖u(t)‖pp + µ2(p− 2)

∫ t

0

‖∇ut(s)‖22ds− pc
(1.32)

where ε > 0. Now we consider the initial energy E(0) divided into three cases,

case 1: E(0) < 0

Taking ε = p in (1.32) and choosing 0 < c ≤ −2E(0) we have

K(t) ≥ p(−2E(0)− b) +

(
(p− 2)a− (p− 2 +

1

p
)

∫ t

0

g(s)ds

)
‖∇u(t)‖22

+
2

p
‖u(t)‖pp + µ2(p− 2)

∫ t

0

‖∇ut(s)‖22ds ≥ 0

(1.33)

Choosing T0 large enough we get L′(0) = 2
∫

Ω
u0(x)u1(x)dx+ 2cT0 > 0.

case 2: E(0) = 0

Taking ε = p in (1.32) and choosing c = 0 we have

K(t) ≥
(

(p− 2)a− (p− 2 +
1

p
)

∫ t

0

g(s)ds

)
‖∇u(t)‖22

+
2

p
‖u(t)‖pp + µ2(p− 2)

∫ t

0

‖∇ut(s)‖22ds ≥ 0

(1.34)

case 2: 0 < E(0) < d

Taking ε = (1− α)p+ 2α in (1.32), we find

K(t) ≥ −2pE(0) +

(
(p− 2)−

(
p− 2 +

1

(1− α)p+ 2α

)∫ t

0

g(s)ds

)
‖∇u(t)‖22

+ α(p− 2)(g ◦ ∇u)(t) +
2

p
‖u(t)‖pp + µ2(p− 2)

∫ t

0

‖∇ut(s)‖22ds− pc
(1.35)
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and from (1.22), it follows that

K(t) ≥ −2pE(0) + α(p− 2)

(
a−

∫ ∞

0

g(s)ds

)
‖∇u(t)‖22 +

2

p
α‖u(t)‖pp − pc (1.36)

From Lemma(1.4) and using (1.11)-(1.12) we deduce that

d ≤ J(λ∗u(t)) <
p− 2

2p

(
a−

∫ ∞

0

g(s)ds

)
‖∇u(t)‖22 +

1

p2
‖u(t)‖pp (1.37)

Since u is continious on [0, T ] then there exists d1 > 0 such that

d+ d1 <
p− 2

2p

(
a−

∫ ∞

0

g(s)ds

)
‖∇u(t)‖22 +

1

p2
‖u(t)‖pp (1.38)

From this and (1.36), we get

K(t) ≥ −2pαd+ 2αp

(
p− 2

2p

(
a−

∫ ∞

0

g(s)ds

)
‖∇u(t)‖22 +

1

p2
‖u(t)‖pp

)
− pc

> 2αpd1 − pc
(1.39)

Hence for c small enought we get L(t) ≥ 0.Choosing T0 large enough we get

L′(0) = 2

∫

Ω

u0(x)u1(x)dx+ 2cT0 > 0

Thus, we conclude from Lemma(1.2) that limt→T−∗ L(t) = ∞ which implies that
limt→T−∗ ‖∇u(t)‖22 =∞ �
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Blow-up results for fractional damped
wave models with non-linear memory
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ABSTRACT

This paper is devoted to find the critical exponent in Fujita sense and to
prove the blow-up results of solution of the following Cauchy problem

utt −∆u+Dσ
0|tut =

∫ t

0

(t− τ)−γ |u(τ, ·)|p dτ, (1)

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rn. (2)

where p > 1, 0 < γ < 1 and ∆ is the usual Laplace operator, σ ∈]0, 1[
and Dσ

0|t is the right hand side fractional operator of Riemann-Liouville,
by using the test function method.
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CONVERGENCE OF FINITE VOLUME MONOTONE

SCHEMES FOR STOCHASTIC GENERALIZED BURGERS

EQUATION ON A BOUNDED DOMAINS

N. DIB, A.GUESMIA, AND N.KECHKAR

Abstract. This paper is devoted to the study of finite volume methods
for the discretization of the generalized Burgers equation with additive
stochastic force defined on a bounded domain D of R with Dirichlet
boundary conditions and a given initial data in L∞ (D). We intro-
duce a notion of stochastic measure-valued entropy solution which gen-
eralizes the concept of weak entropy solution introduced by F.Otto for
such kind of hyperbolic bounded value problems in the deterministic
case. We prove that the numerical solution converges to the stochastic
measure-valued entropy solution of the continuous problem under a sta-
bility condition on the time and space steps, this also proof the existence
of a measure-valued entropy weak solution.

2010 Mathematics Subject Classification. 60H15, 35L60, 60H40,
65M08.

Keywords and phrases. Stochastic Burgers equation, first-order hy-
perbolic equation, space-time white noise, finite volume method, mono-
tone scheme, Dirichlet boundary conditions.

1. Define the problem

We wish to find an approximate solution to the following nonlinear scalar
conservation law with a stochastic additive force, posed over a bounded
domain D with initial condition and Dirichlet boundary conditions:

(1)





∂u(ω,t,x)
∂t + ∂(f(u(ω,t,x)))

∂x = ∂W
∂t in Ω× ]0, T [×D,

u (ω, 0, x) = u0 (x) ω ∈ Ω, x ∈ D,

u (ω, t, x) = 0 ω ∈ Ω, t ∈ ]0, T [ , x ∈ ∂D

where D = ]0, 2π[ , T > 0 and W is a cylindrical Wiener process.
Recall that the cylindrical Wiener process can be written as

(2) W (t, x) =

∞∑

k=1

βk (t) ek (x)

where {ek} is any orthonormal basis of L2 (0, 2π) and {βk} is a sequence
of mutually independent real Brownian motions in a fixed probability space
(Ω,F ,P) adapted to a filtration {Ft}t≥0.

1
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CALCULATING THE H∞ NORM FOR A NEW CLASS OF

FRACTIONAL STATE SPACE SYSTEMS

AMINA FARAOUN AND DJILLALI BOUAGADA

Abstract. This paper outlines a pratical algorithm to calculate the
H∞ norm of an othor class of fractional linear state space systems as
an extension of the work in [1]. This method was obtained from using a
parahermitian matrix function and level sets of maximum singular value
of the transfer function. Some examples are given to illustrate the ap-
proach.

2010 Mathematics Subject Classification. 15A30, 37N35, 26A33,
44A10.

Keywords and phrases. Fractional systems, Singular systems, H∞
norm, Level sets.
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CHAOTIC BEHAVIOR IN THE PRODUCT OF
GENERATING FUNCTIONS

NOURA LOUZZANI AND ABDELKRIM BOUKABOU

Abstract. In this paper we propose a generating function of binary
product of Fibonacci numbers with Mersenne Lucas numbers that can
show a typical period-doubling cascade to chaos. In this context, the
bifurcation diagram and Lyapunov exponent proved that the proposed
generating function is a deterministic system that exhibits chaotic be-
havior for certain ranges of the control parameters.
2010 Mathematics Subject Classification. 33C65, 34A26, 94A60.
Keywords and phrases. Generating function, Mersenne Lucas num-
bers, Chaos, Lyapunov Exponent, Bifurcation Diagram.

1. Define the problem

We propose in this paper a generating function of the binary product of
Fibonacci numbers with Mersenne Lucas numbers that can show a typical
period-doubling cascade to chaos. To derive the related generating func-
tion of the binary product of (p; q) Fibonacci numbers with Mersenne Lucas
numbers, we introduce intuitive modi�cations as proposed in [3, 4] , by con-
sidering a new operator in order to derive some new symmetric properties of
the Fibonacci numbers and Mersenne Lucas numbers . Moreover, the chaotic
behavior is observed by analyzing the bifurcation diagram and quantifying
the Lyapunov exponents for di¤erent parameter values. As an application,
this proposed generating function is used as a chaos-related �elds of interest.
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QUALITATIVE ANALYSIS OF AN EPIDEMIC MODEL

WITH NONLINEAR INCIDENCE RATE IN THE TIME OF

COVID-19

NADIA MOHDEB

Abstract. In this paper we propose and study an epidemic model with
nonlinear incidence rate, describing some factors effect (protection, ex-
posure, immigration, social distancing, vaccination) on the spread of
certain diseases on the community like the novel coronavirus COVID-
19. The dynamical behavior of the proposed model is examined. We
investigate the existence and stability of the disease-free equilibrium
and the endemic equilibrium. The existence of a limit cycle is studied.
Simulations of the model are performed to illustrate and support the
theoretical results.

2010 Mathematics Subject Classification. 34A34, 34C23, 34C25,
92C60, 92D25.

Keywords and phrases. Epidemic model, Covid-19, Nonlinear inci-
dence, Stability, Psychological effect, Cure rate.

1. Define the problem

On March 11, 2020, the coronavirus COVID-19 has emerged in the world
and World Health Organization has declared it a pandemic. Today, the
spread of this disease is impressive and has widespread socio-economic-
political impacts. Using mathematical models for the description of in-
fectious disease provides information about the transmission of a disease
in the community. The first mathematical model of infectious disease was
formulated in 1927 by Karmack and Mckendrick [5].

To have a clear understanding of the COVID-19 transmission dynamics
and in order to reduce the spread, many researchers model the disease to
figure out the properties [2], [4], [6], [7], [9]-[11]. Recently in [8], the author
have constructed the following mathematical model, inspired from the classic
Lotka-Voltera model [1],

(1)





dh(t)

dt
= ah(t) − bh(t)i(t) + ei(t)

di(t)

dt
= bh(t)i(t) + ci(t) − di(t) − ei(t)

The model (1) is composed of two compartments, healthy and infected; at
time t, the healthy individual population is given by h(t) and the infected
by i(t). The parameters a, b, c, d, and e are positive constants: b is the
infection rate (b = 1− protection rate), d is the death rate, and e is the
cure rate. a is the immigration rate of healthy individuals, and c is that
of infected individuals; immigration has a severe impact of the spreading of
this virus.

1
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Capasso and Serio [3] used, to model cholera epidemic spread in Bari in
1973, a nonlinear saturated incidence rate. This incidence rate seems more
reasonable than the bilinear incidence rate, because it includes the behav-
ioral change and crowding effect of the infective individuals and prevents
the unboundedness of the contact rate by choosing suitable parameters. In
order to represent the nonlinear incidence rate of the COVID-19 outbreak,
we consider in this work, the model (1) and we use the function kI/ (1 + αI).
The parameters k and α are positive constants, where kI measures the in-
fection force of the disease and 1/ (1 + αI) describes the inhibition effect,
interpreted as psychological effect, usually forced by governmental measures.

In this work, basic results are given; we study the existence of equilibria of
the model, their types and their stability. Bifurcations and existence of pe-
riodic solutions for the model are examined. We simulate some results using
different values of the parameters and plotted the outcomes. A conclusion
about some factors effect on the spread of the novel coronavirus COVID-19
on the community, is presented.
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SLIP DEPENDENT FRICTION IN QUASISTATIC
VISCOPLASTICITY.

ABDERREZAK KASRI

Abstract. We consider a mathematical model which describes the qua-
sistatic contact between a viscoplastic body and an obstacle the so-called
foundation. The contact is modelled with a version of Coulomb�s law
with slip-dependent friction in which the normal stress is prescribed on
the contact surface. Under appropriate assumptions, we provide a vari-
ational formulation to the mechanical problem for which we prove the
existence of a weak solution.The proof is based on the time-discretization
method, the Banach �xed point theorem and arguments of monotonicity,
compactness and lower semicontinuity.

2010 Mathematics Subject Classification. 74C10, 74M15, 49J40,
74H20, 74A55.

Keywords and phrases. Viscoplastic material, Coulomb�s law of
dry friction, slip dependent coe¢ cient of friction, quasistatic, time-
discretization method, variational inequalities.

The aim of this paper is to provide a variational analysis in the study of
the frictional contact between a viscoplastic body and a foundation. The
physical setting is as follows. A deformable body occupies a bounded do-
main 
 � Rd (with d=2; 3). The material�s behaviour is modelled with
a rate-type constitutive law and the process is quasistatic in the time in-
terval of interest [0; T ]. We assume that the boundary � of the domain 

is Lipschitz continuous, and it is partitioned into three disjoint measurable
parts �1; �2; �3, such that meas(�1) > 0. The body is clamped on �1 and
therefore the displacement �eld vanishes there, while volume forces of den-
sity f0 act in 
 and surface tractions of density f2 act on �2. The body is
supposed to be in frictional contact over �3 with a foundation. The contact
is described by a version of Coulomb�s law of dry friction with slip depen-
dent friction in which the normal stress is prescribed on the contact surface.
Under the above assumptions, the classical formulation of our problem is
the following.

1
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Find a displacement �eld u : 
 � [0; T ] ! Rd and a stress �eld � :

� [0; T ]! Sd such that

_� = A"( _u) + B(�; " (u)); in 
� (0; T );(1)

Div� + f0 = 0; in 
� (0; T );(2)

u = 0; on �1 � (0; T );(3)

�� = f2; on �2 � (0; T );(4)

��� = S; on �3 � (0; T );(5) 8>>>>>>>><>>>>>>>>:

j�� j � S� (ju� j) ;

j�� j < S� (ju� j)) _u� = 0;

j�� j = S� (ju� j)) 9� � 0;

such that �� = �� _u� ;

on �3 � (0; T ),(6)

(7) u(0) = u0; �(0) = �0 in 
.

Equation (1) represents the rate-type viscoplastic constitutive law. Equa-
tion (2) represents the equilibrium equation posed on the domain 
. Con-
ditions (3)-(4) are the displacement-traction boundary conditions where ��
represents the Cauchy stress vector. Conditions (5)-(6) characterize the con-
tact boundary conditions on �3, where (5) indicates that the normal stress
is prescribed on the contact surface. Condition (6) states that the tangen-
tial shear �� is bounded by the normal stress S multiplied by the value of
the friction coe¢ cient � (ju� j) ; such that sliding takes place only when the
equality holds and the friction stress in this case is proportional and opposed
to the tangential velocity. Finally (7) are the initial conditions.
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EXISTENCE OF SOLUTIONS FOR NONLINEAR

HILFER-KATUGAMPOLA FRACTIONAL DIFFERENTIAL

INCLUSIONS

MOHAMMED SAID SOUID

Abstract. This paper is concerned with the existence of solutions for
nonlinear initial value problem for fractional differential inclusions in
weighted space involving the Hilfer-Katugampola fractional derivative.
Both cases of convex and nonconvex valued right hand sides are consid-
ered.

2010 Mathematics Subject Classification. 26A33, 34A08.

Keywords and phrases. Hilfer-Katugampola fractional derivative,
set-valued maps, differential inclusions, fixed point.
.

1. Introduction

In this work we deal with the existence of solutions for the initial value
problem (IVP for short), for Hilfer-Katugampola fractional differential in-
clusions

(1) ρDν1,ν2
a+

z(t) ∈M(t, z(t),ρ Iαa+z(t)), t ∈ J := [a, b],

(2) (ρI1−ν
a+

z)(a) = λ, λ ∈ R, ν = ν1 + ν2(1− ν1),
where ν1 ∈ (0, 1), ν2 ∈ [0, 1], ρ > 0, M : J ×R×R −→ P(R) is multivalued
map, (P(R)) is the family of all nonempty subsets of R, ρDν1,ν2

a+
is the Hilfer

Katugampola fractional derivative of order ν1 and type ν2 and ρIν1
a+

, ρI1−ν
a+

are Katugampola fractional integral of order ν1 and 1− ν, respectively with
a > 0.

The rest of paper is organized as follows: In Section 2, we will recall briefly
some basic definitions and preliminary facts which will be used throughout
the following Sections. In Section 3, we present two results for existence
solutions of the problem (1)− (2), our first result is based of Bohnnenblust-
Karlin fixed point theorem when the right hand side is convex valued, the
second result is based on contraction multivalued maps given by Covitz and
Nadler when the right hand side is nonconvex valued. An example is given
in Section 4 to illustrate the application of our main results. These results
can be considered as a contribution to this emerging field.

2. Main results

For the existence of solutions for our problem, we need the following
auxiliary lemma.

1
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Lemma 2.1. (See [9]) Let ν = ν1+ν2(1−ν1), where 0 < ν1 < 1, 0 ≤ ν2 ≤ 1
and ρ > 0. let g ∈ C1−ν,ρ(J ). A function z is a solution of the fractional
integral equation

z(t) =
λ

Γ(ν)

(
tρ − aρ
ρ

)ν−1
+

∫ t

a
sρ−1

(
tρ − sρ
ρ

)ν1−1 g(s)

Γ(ν1)
ds.

if and only if z is a solution of the fractional initial value problem

ρDν1,ν2
a+

z(t) = g(t), t ∈ J ,

(ρI1−νz)(a) = λ, λ ∈ R, ν = ν1 + ν2(1− ν1).
2.1. The convex case. Now we are concerned with the existence of solu-
tions for the problem (1)− (2) when the right hand side has convex values.
For this, we assume that M is a compact and convex valued multivalued
map.
Let us introduce the following assumptions:

(H1): M : J × R× R→ Pcp,c(R); (t, y, z) 7−→M(t, y, z)
(i): is measurable, with respect to t, for each y, z ∈ R,
(ii): upper semicontinuous with respect to (y, z) ∈ R×R, for a.e. t ∈ J .
(H2): There exists a continuous function ϕ : J → R+ such that:

‖M(t, y, z)‖P = sup{|g| : g ∈M(t, y, z)} ≤ ϕ(t)

1 + |y|+ |z| , t ∈ J and y, z ∈ R.

(H3): There exist p, q ∈ L∞(J ) such that

Hd(M(t, y, z),M(t, y, z) ≤ p(t)|y−y|+q(t)|z−z| for a.e. t ∈ J and y, y, z, z ∈ R.

The first result is based on Bohnnenblust-Karlin fixed point theorem.

Theorem 2.2. Assume that the assumptions (H1) − (H3) are satisfied.
then the IVP (1)− (2) has at least one solution on J .

2.2. The nonconvex case. This subsection is devoted to proving the ex-
istence of solutions for (1) − (2) with a nonconvex valued right hand side.
Our second result is based on contraction multivalued maps given by Covitz
and Nadler.
Let us introduce the following assumption:

(H4): M : J ×R×R→ Pcp(R) has the property thatM(., y, z) : J →
Pcp(R) is measurable, and integrable bounded for each y, z ∈ R.

Theorem 2.3. Assume that the assumptions (H3)− (H4) are satisfied. If

(3)
[ p∗

Γ(ν1 + 1)

(
bρ − aρ
ρ

)ν1
+

q∗

Γ(2ν1 + 1)

(
bρ − aρ
ρ

)2ν1 ]
< 1.

Then the IVP (1)− (2) has at least one solution z ∈ C1−ν,ρ(J ).

3. Example

As an application of our results we consider the following fractional initial
value problem,

(4) ρD
1
2
, 1
2

a+
z(t) ∈M(t, z(t),ρ Iν1

a+
z(t)), t ∈ J := [

π

2
, π],
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(5) (ρI 1
4 z)(

π

2
) = (1− π

2
),

where ρ > 0, ν = 3
4 .

Since all conditions of Theorem 2.2 are satisfied, the IVP (4) − (5) has at
least one solution.
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ETUDE COMPARATIVE ENTRE DEUX MÉTHODES
HYBRIDES DU GRADIENT CONJUGUÉ AVEC

RECHERCHE LINÉAIRE INEXACTE

KELLADI SAMIA

Abstract. La méthode du gradient conjugué est l�une des méthodes les
plus e¢ caces pour résoudre les systèmes linéaires de grande dimension
ainsi que les problèmes d�optimisation non linéaire sans contraintes.

Dans ce travail, on a fait une étude comparative entre deux méth-
odes hybrides du gradient conjugué, parmi les plus récentes, la méthode
MMDL et MLSCD, en utilisant di¤érentes règles de rcherche linéaire
inexacte. Les tests numériques ont été e¤ectués sur plusieurs fonctions
tests et pour di¤érentes dimensions (n):
2021 Mathematics Subject Classification. 65K05, 90C26, 90C30.

Keywords and phrases. Optimisation sans contraintes, Méthode du
gradient conjugué, Recherche linéaire inexacte, Convergence globale,
Méthode hybride.

1. Position du problème

Soit le problème d�optimisation sans contraintes:

(P )

�
min f(x)
x 2 Rn ; où f : Rn �! R

Parmi les méthodes les plus utilisées pour résoudre ce type de problèmes,
on a la méthode du gradient conjugué (G.C). Cette méthode a été proposée
en 1952 parHestenes et Steifel (HS), pour résoudre des systèmes linéaires
avec des matrices dé�nies positives ce qui est équivalent à la minimisation de
fonctions quadratiques strictement convexes. Depuis, plusieurs mathémati-
ciens ont étendu cette méthode pour résoudre des problèmes non linéaires
de type (P ); où f n�est pas convexe. Ceci a été réalisé pour la première fois
en 1964 par Fletcher et Reeves (FR), puis en 1969 par Polak, Ribière
et Polyak (PRP), et depuis plusieurs variantes de la méthode du gradient
conjugué ont été proposées jusqu�à nos jours, telles que celle de CD, DY,
DHSDL, DLSDL.
Toutes ces méthodes génèrent une suite fxkgk2N� de la façon suivante:�

x1 point initial
xk+1 = xk + �kdk k � 1 :

Le pas �k 2 R est déterminé par une recherche linéaire exacte ou inexacte.
Les directions dk sont calculées de façon récurrente par les formules suiv-

antes:

dk =

�
�gk k = 1
�gk + �kdk�1 k � 2

où gk = rf(xk) et �k est un scalaire.
1
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Les di¤érentes valeurs attribuées à �k dé�nissent les di¤érentes variantes
de la méthode du gradient conjugué.
Parmi les �k les plus connus, on a:

�FRk =
k gk k2
k gk�1 k2

; �CDk = � k gk k2

gTk�1dk�1
; �DYk =

k gk k2

yTk�1dk�1
;

�HSk =
gTk yk�1
yTk�1dk�1

; �PRPk =
gTk yk�1
k gk�1 k2

; �LSk = � gTk yk�1
gTk�1dk�1

;

�DHSDLk =
k gk k2 � kgkk

kgk�1k j g
T
k gk�1 j

� j gTk dk�1 j +dTk�1yk�1
� t g

T
k sk�1

dTk�1yk�1
; � > 1; t > 0;

�DLSDLk =
k gk k2 � kgkk

kgk�1k j g
T
k gk�1 j

� j gTk dk�1 j �dTk�1gk�1
� t g

T
k sk�1

dTk�1yk�1
; � > 1; t > 0;

où yk�1 = gk�gk�1; sk�1 = xk�xk�1 et k : k désigne la norme euclidienne.
On considère deux nouvelles méthodes hybrides du gradient conjugué,

parmi les plus récentes, la première est la méthode mixte (MLSCD) des
deux variantes de Y. Zheng et B. Zheng (DHSDL et DLSDL), la seconde est
la méthode (MMDL) de Liu-Story (LS) et celle de la descente conjuguée
(CD).
On considère la méthodeMLSCD, donnée avec la direction de recherche

dk =

�
�g1 k = 1

D(�LSCDk ; gk; dk�1) k � 2; ;

où
�LSCDk = max

�
0;min

�
�LSk ; �CDk

		
;

et

D(�LSCDk ; gk; dk�1) = �
�
1 + �LSCDk

gTk dk�1

kgkk2

�
gk + �

LSCD
k dk�1:

Algorithme MLSCD

Etape 0: Donner un point de départ x1 et " > 0:
Etape 1: Poser k = 1 et calculer d1 = �g1:
Etape 2: Si kgkk � "; Stop; sinon passer à l�étape 3.
Etape 3: Calculer le pas �k 2]0; 1] (par Armijo ou Wolfe ou Backtracking).
Etape 4: Calculer xk+1 = xk + �kdk:
Etape 5: Calculer gk+1; yk = gk+1 � gk et passez à l�étape 6.
Etape 6: Calculer

�LSk+1 = �
yTk gk+1

gTk dk
, �CDk+1 = �

kgk+1k 2

gTk dk
;

�LSCDk+1 = max
�
0;min

�
�LSk+1; �

CD
k+1

		
:

Etape 7: Calculer la direction de recherche dk+1 = D(�LSCDk+1 ; gk+1; dk):
Etape 8: Poser k = k + 1 et passer à l�étape 2.
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Pour la seconde méthode hybride MMDL, on a la diretion de recherche
dk est donnée comme suit :

dk =

�
�g1 k = 1

D(�MMDL
k ; gk; dk�1) k � 2 ;

où

�MMDL
k = max

�
0;min

�
�DHSDLk ; �DLSDLk

		
;

et

D(�MMDL
k ; gk; dk�1) = �

�
1 + �MMDL

k

gTk dk�1

kgkk2

�
gk + �

MMDL
k dk�1:

Algorithme MMDL

Etape 0: Donner un point de départ x1 et les paramètres " > 0; � > 1:
Etape 1: Poser k = 1 et calculer d1 = �g1:
Etape 2: Si kgkk � " Stop; sinon passer à l�étape 3.
Etape 3: Calculer le pas �k 2]0; 1] (par Armijo ou Wolfe ou Backtracking)
Etape 4: Calculer xk+1 = xk + �kdk:
Etape 5: Calculer gk+1; yk = gk+1 � gk; sk = xk+1 � xk et passer à l�étape 6.
Etape 6: Calculer

�DHSDLk+1 =
kgk+1k2�

kgk+1k
kgkk jg

T
k+1gkj

�jgTk+1dkj+dTk yk
� �k

gTk+1sk

dTk yk
,

�DLSDLk+1 =
kgk+1k2�

kgk+1k
kgkk jg

T
k+1gkj

�jgTk+1dkj+dTk gk
� �k

gTk+1sk

dTk yk
,

�MMDL
k+1 = max

�
0;min

�
�DHSDLk+1 ; �DLSDLk+1

		
:

Etape 7: Calculer la direction de recherche dk+1 = D(�MMDL
k+1 ; gk+1; dk):

Etape 8: Poser k = k + 1 et passer à l�étape 2.

Dans ce travail, on a fait une étude comparative numérique entre ces
deux méthodes hybrides du gradient conjugué (MMDL et MLSCD),
en utilisant di¤érentes règles de rcherche linéaire inexacte, à savoir celle
d�Armijo, de Wolfe et de Backtracking, pour calculer le pas de déplacement
�k. Les tests numériques ont été e¤ectués sur plusieurs fonctions tests et
pour di¤érentes dimensions (n):
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Existence Result of Positive Solution for a Degenerate parabolic System via a
Method of Upper and Lower Solutions
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1 Abstract

The aim of this paper is to prove the existence of positive maximal and minimal solutions
for a class of degenerate parabolic reaction di¤usion systems,including the uniqueness of the
positive solution. To answer these questions, we use a technique based on the method of
upper and lower solutions.
Keywords : reaction di¤usion systems, degenerate parabolic systems, upper and lower
solutions.
MSC 2010 : 35J62, 35J70, 35K57.

2 Introduction

Degenerate quasilinear parabolic and elliptic equations have received extensive attentions
during the past several decades and many topics in the mathematical analysis are well
developed and applied to various �elds of applied sciences, especially in ecology as in this
work.
In this paper, we consider a coupled system of arbitrary number of quasilinear parabolic
equations in a bounded domain with Dirichlet boundary condition where the domain is
assumed to have the outside sphere property without the usual smoothness condition. The
system of equations under consideration is given by8<:

@ui
@t
� div (Di (ui)rui) + bi: (Di (ui)rui) = fi (t; x; u) ; (t; x) 2 QT

ui (t; x) = gi (t; x) ; (t; x) 2 ST ;
ui (0; x) = hi (x) ; x 2 
; i = 1; :::; N

(1)

where 
 is a bounded domain in Rn (n � 2) and QT = [0; T ] � 
 and ST = [0; T ] �
@
. Di (ui) ; fi(t; x; u) and gi(t; x); hi (x) are prescribed functions satisfying the following
hypotheses :

(H1) fi (t; x; :) 2 C
�
2
;�
�
�

�
, fi (t; x; 0) � 0 in QT and gi (t; x) 2 C� (ST ).

(H2) Di (u) 2 C2 ([0;M1]), Di (u) > 0 in (0; Mi], and Di (0) � 0 with Mi = k~uikC(�
).
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(H3) fi (:;u) 2 C1 (S�), and
@fi
@uj

� 0 ; for j 6= i ; u 2 S�

(H4) gi(t; x) > 0 on ST ;  i(x) > 0 in 
; and gi(0; x) = hi(x) on @
.

(H5) There exists a constant �0 > 0 such that for any x0 2 @
 there exists a ball K outside
of 
 with radius r � �0 such that K \ �
 = fx0g.

we denote C� (
) to the space of Hölder continuous functions in 
.
In the above system, we further assume D1 (0) = 0 or D2 (0) = 0.
Let 1 (x) and 2 (x) be smooth positive functions satisfying

ci (x) � max
�
�@f
@u
(t; x; u) ; u 2 S�

�
; (2)

i = 1; :::; N
First, we have to clarify in which sense we want to solve our problem :

De�nition 1 A pair of functions ~u = (~u1; : : : ; ~uN) ; û = (û1; : : : ; ûN) in C
�
�QT
�
\ C2 (QT )

are called ordered upper and lower solutions of (1.1) if û 6 ~u and if8<:
@ûi
@t
� div (Di (ûi)rûi) + bi � (Di (ûi)rûi) 6 fi(t; x; û) in QT

ûi(t; x) 6 gi(t; x) on ST
ûi(0; x) 6 hi(x) in 
; i = 1; : : : ; N

and ~u satis�es the above inequalities in reversed order. It is obvious that every solution of
(1.1) is an upper solution as well as a lower solution. For a given pair of ordered upper and
lower solutions ~u; û;

For a given pair of ordered upper and lower solutions ~u and û, we de�ne

Si �
�
ui 2 C� (QT ) \ C

�
�QT
�
; ûi 6 ui 6 ~ui

	
(i = 1; : : : ; N);

S =
�
u 2 C� (QT ) \ C

�
�QT
�
: û 6 u 6 ~u

	
:

Now, we assume the following assumptions :

(H1) fi (t; x; :) 2 C
�
2
;�
�
�

�
, fi (t; x; 0) � 0 in QT and gi (t; x) 2 C� (ST ).

(H2) Di (u) 2 C2 ([0;M1]), Di (u) > 0 in (0; Mi], and Di (0) � 0 with Mi = k~uikC(�
).

(H3) fi (x; :) 2 C�
�
�

�
, fi (:; u) 2 C1 (S�), and

@fi
@uj

� 0 ; for j 6= i ; u 2 S�

(H4) gi(t; x) > 0 on ST ;  i(x) > 0 in 
; and gi(0; x) = hi(x) on @
.

(H5) There exists a constant �0 > 0 such that for any x0 2 @
 there exists a ball K outside
of 
 with radius r � �0 such that K \ �
 = fx0g.
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2.1 The main result

Now, we can state the main result of this paper :

Theorem 1 Let ~us, ûs be ordered positive upper and lower solutions of (1), and let hy-
potheses (H1) � (H5) hold. Then problem (1) has a unique positive solution u�s that sat-
is�es ûs � u�s � ~us: Moreover, the sequences fumg ; fumg with u (0) = ûs and u (0) =
~us converge monotonically to u

�
s and satisfy the relation

ûs � u(m)s � u(m+1)s � u(m+1)s � u(m)s � ~us ; for all m � 1
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           Existence and Uniqueness for a System of  

                         klein-Gordon equations 
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ABSTRACT  

In our paper we study the weak existence of a non linear hyperbolic coupled system of 
Klein-Gordon equations with memory and source terms by using the Faedo-Galerkin 
method thechniques and compactness result, we have demonstrated the uniqueness of 
the solution by using the classical technique . 
 

KEYWORDS AND PHRASES. Klein-Gordon system , Faedo-Galerkin method,  source term.  

   

                                             1. DEFINIE THE PROBLEM 

                                                                      REFERENCES 

[1] M. Milla Miranda and L.A.Medeiros.; On existence of global solutions of a coupled non-linear 

Klein-Gordon equations , Funkcial. Ekvac. 30(1987), 147-161. 

[2] Doherty Andrade and Angela Megnon; Global solutions for a system of Klein-Gordon equations 

with memory,Bol. Soc. Paran. Mat (3s) v.  21 1/2 (2003)127-138. 

 [3] Zhijian, Y. Initial boundary value problem  for a class of non-linear  strongly damped wave 

equations. Mathematical in applied  sciences,  26(12), 1047-1066 (2003). 

[4] Brrimi, S;  Messaoudi, S. A.  Exponential decay of solutions to a viscoelastic equations with 

nonlinear  localized  damping Electronic  Journal of Differential  equations, 88, 1-10 (2004).   

AFFILIATION1  

Laboratory of Applied Mathematics and History and Didactics of  mathematics "LAMAHIS",  Department of 
mathematics, University 20 august 1955 Skikda, Algeria. 

Email address : loubnalatioui@gmail.com                                                    

AFFILIATION 2 

Laboratory of Applied Mathematics and History and Didactics of  mathematics "LAMAHIS",  Department of 
mathematics, University 20 august 1955 Skikda, Algeria. 

Email address : guesmiasaid@yahoo.fr 

 

290



EXISTENCE DU HYPERCHAOS DANS UN NOUVEAU
SYSTÈME DE RABINOVICH D’ORDRE FRACTIONNAIRE

AVEC UN SEUL TERME NON LINÉAIRE

SMAIL KAOUACHE

Résumé. Dans ce travail de cette communication, on va proposer un
nouveau système hyperchaotique fractionnaire généré à partir d’une pe-
tite modification du système classique de Rabinovich. Malgré que notre
système est d’ordre fractionnaire et de plus admet un seul élément non
linéaire, on va monter que ce système peut exhiber des comportements
hyperchaotiques. Nous abordons les propriétés dynamiques ainsi que le
problème de la stabilité asymptotique de ce système. Cette stabilité
est réalisée via un contrôleur continu. L’utilisation de la méthode frac-
tionnaire de Lyapounov ainsi qu’une propriété importante de la dérivée
fractionnaire de Caputo pour les systèmes fractionnaires nous permet
de conclure sur la convergence asymptotique des états du système pro-
posé. Des simulations numériques sont illustrés pour tester l’efficacité
du système proposé.

2010 MSC. 34A34, 37B55, 93C55, 93D05 .

Mots Clés. Système de Rabinovich, Dérivée fractionnaire, Contrôle
continu, Systèmes hyperchaotiques fractionnaires.

1. Quelques outils de dérivation fractionnaire au sens de
Caputo

L’expression mathématique de la dérivée fractionnaire au sens de caputo
est donnée par :

C
aD

α
t f(t) =

1

Γ (n− α)

∫ t

a

f (n)(τ)

(t− τ)α−n+1
dτ,(1)

où Γ représente la fonction de Gamma et α ∈ (0, 1) est l’ordre de dérivation.

Theorem 1.1. [3] Considérons le système non linéaire fractionnaire décrit
par le modèle suivant ;

(2)
{
Dαx = f(x),
x(0) = x0,

où x ∈ Rn, 0 < α < 1 et f ∈ Rn une fonction non linéaire continue.

Soient λ1, λ2, ..., λn les valeurs propres de la matrice jacobienne
∂f

∂x
associée

à f au point d’équilibre.
Alors, le système (2) est asymptotiquement stable, si et seulement si :

(3) |arg(λi)| > α
π

2
, pour tout i = 1, 2, ..., n.

1
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Figure 1. Projections de portrait de phase du système (5).

Lemma 1.2. [5] Soit x ∈ Rn, une fonction dérivable au sens de Caputo. On
a alors, pour tout α ∈ (0, 1),

(4)
1

2
DαxT (t)x(t) ≤ xT (t)Dαx(t).

Theorem 1.3. [4] Lorsqu’il existe une fonction de Lyapounov positive V (x),
telle que Dα(V (x)) < 0, pour tout t ≥ t0, alors la solution de système (2)
est asymptotiquement stable.

2. Existence du hyperchos d’un nouveau système fractionnaire
de Rabinovich

Notre nouveau système hyperchaotique est décrit par le modèle fraction-
naire suivant

(5)





Dαx1 = −a1x1 + a2x2,
Dαx2 = a2 (x1 − x4)− a3 (x2 − x3) + x3 − x21x2,
Dαx3 = −a4 (x3 − x2) ,
Dαx4 = −a5x2,

où x1, x2, x3, x4 sont les variables d’état, a1, a2, a3, a4, a5 sont des constantes
réelles, Dα est l’opérateur de dérivation au sens de Caputo, et α est l’ordre
de dérivation compris entre 0 et 1. Lorsque α = 0.98 et les paramètres du
système sont donnés par

(6) a1 = 1, a2 = 0.01, a3 = 1.7, a4 = −2.5 et a5 = 0.03,

le système proposé peut exhiber un comportement hyperchaotique.
Les projections de portrait de phase sur les plans : x1−x3, x2−x3, x1−x2−x3
et x1−x2−x4 sont représentés dans la Figure 1. Les exposants fractionnaires
de Lyapounov du système (5) sont donnés par :

(7) L1 = 0.11, L2 = 0.08, L3 = 0 et L4 = −0.63.
Ce qui assure que le système est bien hyperchaotique.
De plus,

∑4
i=1 Li = −0.44 < 0, ce qui montre une fois encore que le système

est bien dissipatif, et par conséquent, le volume du système va diminuer de
la valeur V0 vers 0. Cela signifie que toutes les trajectoires de ce système
convergent finalement vers un attracteur, quand t→ +∞.
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EXISTENCE DU HYPERCHAOS DANS UN NOUVEAU SYSTÈME DE RABINOVICH D’ORDRE FRACTIONNAIRE AVEC UN SEUL TERME NON LINÉAIRE3
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Figure 2. Courbes des états du système contrôlé.

3. Etude de la stabilité asymptotique

La principale motivation de cette partie est de construire un contrôle actif
pour assurer la stabilité du système proposé.

3.1. Résultats théoriques. Pour quantifier notre objectif, considérons le
système contrôlé suivant

(8)





Dαx1 = −a1x1 + a2x2 + u1,
Dαx2 = a2 (x1 − x4)− a3 (x2 − x3) + x3 − x21x2 + u2,
Dαx3 = −a4 (x3 − x2) + u3,
Dαx4 = −a5x1 + u4,

où 0 < α < 1 et u1, u2, u3, u4 sont des paramètres de contrôle.
Ce système peut être représenter sous forme matricielle comme suit

(9) Dαx = Px+ f(x) + u,

où x = (x1, x2, x3, x4)
T , u = (u1, u2, u3, u4)

T , P et f : R4 → R4 sont
respectivement la partie linéaire et la partie non linéaire du système(9).

Theorem 3.1. Supposons que le contrôle continu u est structuré de la façons
suivant

(10) u = −f(x) + Cx,

où C ∈ R4×4 est la matrice de gain à déterminé.
Si la matrice C est sélectionnée de tel sorte que la matrice P +C est définie
négative, notre système proposé converge asymptotiquement vers zéro.

3.2. Résultats de simulation. Dans les simulations numériques, la mé-
thode Adams-Bashforth-Moulton est utilisée pour résoudre notre système
fractionnaire. Avec des choix particuliers de C et de u, les états variables du
système convergent asymptotiquement vers zéro comme nous voyons dans la
Figure 2.

4. Conclusion

Dans ce travail de cette communication, un nouveau système hyperchao-
tique d’ordre fractionnaire ayant un seul terme non linéaire a été proposé.
Le problème de la stabilité fractionnaire de ce système a été également étu-
dié. Cette stabilité a été réalisée via un contrôleur continu. Une analyse de
Lyapounov ainsi qu’une propriété importante de la dérivée fractionnaire de
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Caputo pour les systèmes fractionnaires ont été effectuée pour conclure sur
la stabilité ainsi que la convergence des états du système. Des simulations
numériques ont été illustré pour tester l’efficacité du système proposé.
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FEEDBACK BOUNDARY STABILIZATION OF THE

SCHRÖDINGER EQUATION WITH INTERIOR DELAY

WASSILA GHECHAM, SALAH-EDDINE REBIAI, AND FATIMA ZOHRA SIDI ALI

Abstract. In [1] Ammari et al established, under Lions geometric con-
dition, an exponential stability result for the wave equation with an inte-
rior delay term and a Neumann boundary feedback. Boundary stabiliza-
tion problems for the undelayed Schrödinger equation were considered in
[2] and [3]. In [4], stability problems for the Schrödinger equation with
a delay term in the boundary or internal feedbaks were investigated.
Our aim in this paper is to study the boundary stabilization problem
for the Schrödinger equation with an interior time delay. Under suitable
assumptions, we prove exponential stability of the solution. This result
is obtained by using multiplier techniques and by introducing a suitable
lyapunov functional.

2010 Mathematics Subject Classification. 93D15; 35J10.

Keywords and phrases. Schrödinger equation, interior delay, bound-
ary stabilization.

1. Define the problem

Let Ω be an open bounded domain of Rn with boundary Γ of class C2

which consists of two non-empty parts Γ1 and Γ2 such that, Γ1 ∩Γ2 = ∅. In
Ω, we consider the following Schrödinger equation with interior delay term
and dissipative boundary feedback:





ut(x, t)− i∆u(x, t) + αu(x, t− τ) = 0 in Ω× (0; +∞),
u(x, 0) = u0(x) in Ω,
u(x, t) = 0 on Γ1 × (0,+∞),
∂u
∂ν (x, t) = −βut(x, t) on Γ2 × (0,+∞),
u(x, t− τ) = f0(x, t− τ) in Ω× (0, τ),

(1)

where

• u0 and f0 are the initial data which belong to a suitable spaces.
• ∂

∂ν is the normal derivative.
• τ > 0 is the time delay.
• α and β are a positive constants.

In this work, we are interested in studying the well-posedness and the stabil-
ity problems of the Schrödinger equation with interior delay and a dissipative
boundary feedback as described in (1).
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FRACTIONAL DIFFERENTIAL EQUATIONS OF
CAPUTO-HADAMARD TYPE AND NUMERICAL

SOLUTIONS

KAOUTHER BOUCHAMA, ABDELKRIM MERZOUGUI, AND YACINE ARIOUA

Abstract. This paper is concerned with a numerical method for solv-
ing generalized fractional differential equation of Caputo-Hadamard de-
rivative. A corresponding discretization technique is proposed. Nu-
merical solutions are obtained and convergence of numerical formula
is discussed. The convergence speed arrives at O(h1−α) . Numerical
examples are given to test the accuracy.

2010 Mathematics Subject Classification. 65C20, 34A08, 26A33.

Keywords and phrases. Numerical method, Fractional differential
equations, Caputo-Hadamard fractional derivative.

1. Define the problem

In this paper, we consider a numerical technique for the fractional differ-
ential equation of Caputo–Hadamard type:

(1)
{

CHDα
a+u (t) + cu(t) = f(t), 0 < a ≤ t ≤ b < ∞

u(a) = ua

Where CHDα denotes the Caputo-Hadamard fractional derivative operator
of order α ∈ (0, 1].The discrete implicit Euler formula is applied to obtain an
approximate sequence for (1). In the first case, the equidistance partition is
used to obtain a discrete version of the Caputo-Hadamard derivative, then
the numerical formula and the numerically solve of the fractional differential
equation are obtained.
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FREE SURFACE FLOWS OVER A TWO OBSTACLES BY

USING SERIES METHOD

ABDELKADER LAIADI

Abstract. Free-surface two-dimensional flows past a successive trian-
gular obstacles is considered. We suppose that the fluid is incompressible
and non-viscous. The flow is assumed to be steady and irrotational. The
gravity and the surface tension are included in the free surface condi-
tion. The problem is solved numerically by employing series-truncation
method. The numerical solutions exist for various values of the Weber
number and the Froude number. When the surface tension tends to
zero, It is shown that there are solutions for which the flow is supercrit-
ical and sub-critical both upstream and downstream. The free surface
profiles are plotted for different sizes of successive triangles

2010 Mathematics Subject Classification. 35B40, 76B07, 76M45.

Keywords and phrases. Free surface flow; potential flow; Weber
number; surface tension; Froude number.
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GLOBAL EXISTENCE OF WEAK SOLUTIONS FOR 2� 2
PARABOLIC FULL REACTION-DIFFUSION SYSTEMS APPLIED

TO A CLIMATE MODEL

MOUNIR REDJOUH(1) -NABILA BARROUK(2) -SALIM MESBAHI(3)

Abstract. This work concerns the global existence in time of weak solutions
for the strongly coupled reaction-di¤usion system with a full matrix of di¤usion
coe¤cients for which two main properties hold: the positivity of the solutions
and the total mass of the components are preserved with time. Moreover
we suppose that the non-linearities have critical growth with respect to the
gradient. The technique we use here in order to prove global existence is in
the same spirit of the method developed by Boccardo, Murat, and Puel for a
single equation.
Our investigation applied for a wide class of the nonlinear terms f and g.

1. Define the problem

The modeling and the mathematical analysis of parabolic systems, in particular,
reaction di¤usion systems, has been the subject of in-depth studies of several math-
ematicians in recent years, as they appear in the modeling of a large variety of phe-
nomena, not only in biology and chemistry, but also in engineering, economics and
ecology, such as gas dynamics, fusion processes, cellular processes, disease propaga-
tion, industrial processes , catalytic transport of contaminants in the environment,
population dynamics, �ame spread and others.. For systematic expositions of some
aspects of the theory, numerous applications, and a comprehensive list of literature
on this subject we refer to [15, 16, 8, 10, 2].
We are interested in global existence in time of solutions to the reaction-di¤usion
systems of the form

(1.1)
@u

@t
� a�u� b�v = f (t; x; u; v;ru;rv) ; in QT ;

(1.2)
@v

@t
� c�u� a�v = g (t; x; u; v;ru;rv) ; in QT ;

with the following boundary conditions

(1.3)
@u

@�
=
@v

@�
= 0; or u = v = 0; in �T ;

supplemented with the initial conditions

(1.4) u (0; x) = u0 (x) ; v (0; x) = v0 (x) ; in 
;

where 
 is an open bounded subset of RN , with smooth boundary @
, QT =
]0; T [ � 
; �T = ]0; T [ � @
; T > 0; and � denotes the Laplacian operator on

2000 Mathematics Subject Classi�cation. 35K57, 35K40, 35K55.
Key words and phrases. Global solution, semigroups, local solution, reaction-di¤usion systems.
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L1 (
) with respect to the x variable with homogeneous Neumann or Dirichlet
boundary conditions. The di¤usion coe¢ cients a, b and c are positive constants
satisfying the condition 2a > (b+ c) which reects the parabolicity of the system.
The system (1.1)-(1.2) may be regarded as a perturbation of the simple and trivial
case where b = c = 0, for which nonnegative solutions exist globally in time.
Always in this case with homogeneous Neumann boundary conditions but when the
coe¤cient of ��u in the �rst equation is di¤erent of the one of ��v in the second
one (diagonal case), Alikakos [14] established global existence and L1-bounds of
solutions for positive initial data in the case

f (u; v) = �g (u; v) = �uv�

where 1 < � <
n+ 2

n
. Masuda [5] showed that solutions to this system exist

globally for every � > 1 and converge to a constant vector as t ! +1. Haraux
and Youkana [?] have generalized the method of Masuda to handle nonlinearities
f (u; v) = g (u; v) = �u	(v) that are from a particular case of our one. In [3],
Moumeni and Barrouk obtained a global existence result. By combining the com-
pact semigroup methods and some L1 estimates, we show that global solutions
exist for a large class of the functions f and g. Recently Kouachi and Youkana
[21] have generalized the method of Haraux and Youkana by adding �c�v to the
left-hand side of the diagonal case and by taking nonlinearities f (u; v) of a weak
exponential growth. Kanel and Kirane [9] have proved global existence, in the
case g (u; v) = �f (u; v) = �uvn and n is an odd integer, under an embarrassing
condition which can be written in our case as

jb� cj < Cp;

where Cp contains a constant from an estimate of Solonnikov. Recently they ame-
liorate their results in [?] to obtain global existence under the conditions

b <

�
a2

a2 + c2

�
c

and

jF (v)j � CF
�
1 + jvj1+�

�
where � and CF are positive constants with � < 1 su¤ciently small and g (u; v) =
�f (u; v) = �uF (v). All techniques used by authors cited above showed their lim-
itations because some are based on the embedding theorem of Sobolev as Alikakos
[14], Hollis, et all [22], . . . another as Kanel and Kirane [9] use a properties of
the Neumann function for the heat equation for which one of it�s restriction the
coe¤cient of ��u in equation (1.1) must be larger than the one of ��v in equation
(1.2) whereas it isn�t the case of problem (1.1)-(1.4).
Moumeni and Barrouk [4] has proved the global existence of solutions for two-
component reaction-di¤usion systems for the same system with homogeneous Dirich-
let boundary conditions.
On the same direction, Kouachi [20] has proved the global existence of solutions for
two-component reaction-di¤usion systems with a general full matrix of di¤usion co-
e¤cients, nonhomogeneous boundary conditions and polynomial growth conditions
on the nonlinear terms.
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In this present article we consider the problem (1.1)-(1.4) by using a homogeneous
Neumann or Dirichlet boundary conditions we establish a global existence result of
the solution.
The components u (t; x) and v (t; x) represent either chemical concentrations or
biological population densities and system (1.1)-(1.2) is a mathematical model de-
scribing various chemical and biological phenomena ( see Cussler [6], Garcia, Ybarra
and Clavin [17], Groot and Mazur [23]).
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GALERKIN APPROXIMATION OF THE

DIFFUSION-REACTION EQUATION BY CUBIC

B-SPLINES

NOURIA ARAR

Abstract. This work is devoted to the development of a Galerkin-type
approximation of the solution of the diffusion-reaction equation, using
cubic B-Spline functions and a Runge Kutta of order 4 finite difference
scheme. Examples are used to validate the proposed approximation.
The numerical results obtained show the effectiveness of the procedure.

2010 Mathematics Subject Classification. 65D07, 65N30, 65N22,
65N06.

Keywords and phrases. diffusion-reaction equation, Finite differ-
ences, Galerkin method, Finite elements, cubic B-splines.

1. Define the problem

We consider the diffusion-reaction problem with homogeneous boundary
conditions.

(1)





∂u

∂t
(t, x)− α∂

2u

∂x2
(t, x) + βu(t, x) = f(t, x) − 1 < x < 1; t > 0

u(t,−1) = u(t, 1) = 0
u(0, x) = u0 = g(x)

where g(x) a given initial condition.
In this study, we focus on the case where the reaction and diffusion coeffi-
cients are scalars. Let α, β ∈ R.
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GLOBAL STABILITY OF COVID-19 EPIDEMIC MODEL

KHELIFA BOUAZIZ AND SALEM ABDELMALEK

Abstract. In this study, a system of �rst order ordinary di¤erential
equations is used to analyse the dynamics of COVID-19 disease via a
mathematical model proposed.The global stability analysis is conducted
for the extended model by suitable Lyapunov function, in which either
susceptible or infective populations are di¤usive. The stability of the
disease is dependent on both transmission rate of the disease and the
progression rate of the infectious state to isolated or hospitalized state.
The number R0 can be played role in determining whether the disease
will extinct or persist, if R0 < 1, then the disease-free equilibrium is
globally asymptotically stable and unstable when R0 > 1.
Keywords: Stability local, Stability global, Equilibriums points, Lya-

punov function.

The mathematical model of the transmission of COVID-19 is described
as follows:

In the model, total population N(t) is divided into four classes: Sus-
ceptible: S, Infected: I, Hospitalized: Hand Recovered: R. So, N(t) =
S(t) + I(t) +H(t) +R(t).
� � � � � � � � � � �

1

305



2 K. BOUAZIZ AND S. ABDELMALEK

References

[1] Abdelmalek, S., & Bendoukha, S. (2018). Global asymptotic stability for a SEI
reaction�di¤usion model of infectious diseases with immigration. International Journal
of Biomathematics, 11(03), 1850044.

[2] McCluskey, C. C. (2010). Complete global stability for an SIR epidemic model with
delay� distributed or discrete. Nonlinear Analysis: Real World Applications, 11(1),
55-59

[3] Martcheva, M. (2015). An introduction to mathematical epidemiology (Vol. 61). New
York: Springer.

[4] Ndaïrou, F., Area, I., Nieto, J. J., & Torres, D. F. (2020). Mathematical modeling
of COVID-19 transmission dynamics with a case study of Wuhan. Chaos, Solitons &
Fractals, 135, 109846.

E-mail address : khalifa.bouaziz@univ-tebessa.dz
E-mail address : salem.abdelmalek@univ-tebessa.dz

Khelifa Bouaziz, Larbi Tebessi University-Tebessa, Algeria.

Salem Abdelmalek, Larbi Tebessi University-Tebessa, Algeria.

306



History-dependent hyperbolic variational inequalities with

applications to contact mechanics
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Abstract

The aim of this work is to study an abstract hyberbolic variational inequalities with
a history dependent operator. a result on its solvability is proved by applying the time-
discretization technique and monotone operators theory. We illustrate the abstract results
by an application to dynamic contact frictional problem for viscoelastic materials.

2010 Mathematics Subject Classification. 5K15, 49J40, 70G75, 70F40
Keywords: Variational inequalities, hyperbolic, time-discretization technique.

1 Definition of problem:

In this work we establish the existence of solution to hyperbolic variational inequalities
with a history dependent operator arising in dynamic viscoelastic frictional contact prob-
lem. By a time-discretization technique and monotone operators theory, the inqualities
are solved in the form of evolutionary inclusions.

Here, V is a Banach space of admissible displacements, and we introduce A and B
are operators related to the viscoelastic constitutive law, C represents a history-dependent
operator ϕ is a convex functional related to contact boundary conditions, and J0 denotes
the generalized gradient of a locally Lipschitz function J . The function f represents the
given body forces and surface traction, and u0, u1 represents the initial displacement and
velocity, respectively.

2 Existence of solution

In this section , we consider an evolution of triple spaces V ⊂ H ⊂ V ∗, where V is a
strictly convex, reflexive and separable Banach space, H is a separable Hilbert space. For
0 < T < +∞, we consider the standard Bochner-Lebesgue function spaces V = L2(0, T ;V )
and W = {v ∈ V|v′ ∈ V∗}, where v′ = ∂v/∂t is the time derivative in the sense of vector-
valued distributions. By the reflexivity of V we have both V and its dual V∗ = L2(0, T ;V ∗)
are reflexive Banach spaces.

Let A,B are operators related to the viscoelastic constitutive law, we have X is Banach
space, a functionals ϕ : [0, T ] × X → R, J : [0, T ] × X → R and f ∈ V∗, u0, u1 ∈ V , we
consider the hyperbolic variational inequality of finding an element u ∈ V such that u′ ∈ W

1

307



with some hypotheses H(A),H(B), H(ϕ),H(J), H(C), H(L) and H(f).




〈u′′(t) + ψ(t) +Bu(t) + (Cu)(t)− f(t), v − u′(t)〉+ ϕ(t, v)− ϕ(t, u′(t))
+J0(t, Lu′(t);Lv − Lu′(t) ≥ 0 for all v ∈ V, a.e.t ∈ (0, T )
u(0) = u0, u′(0) = u1 ψ(t) ∈ A(t, u′(t))

(1)

(Cu)(t) = E

(∫ t

0
q(t, s)u(s)ds+ α

)
for t ∈ [0, T ]

We make the following hypotheses.

H(A): A : [0, T ]× V → 2V
∗

is multivalued operator such that
(a) A(., v) : [0, T ]× V → 2V

∗
is measurable for all v ∈ V ;

(b) A(t, .) is pseudomonotone for a.e. t ∈ [0, T ]; there exist a1 ∈ L2(0, T ) and a
constant c1 > 0 such that for all v ∈ V

‖ψ(t)‖V ∗ ≤ a1(t) + c1‖ψ(t)‖V , ∀ ψ(t) ∈ A(t, v) and a.e t ∈ [0, T ]

(c) there exist a2 ∈ L1
+(0, T ) and c2 > 0 such that for allv ∈ V

〈ψ(t), v〉 ≥ c2‖v‖2V − a2(t), ∀ ψ(t) ∈ A(t, v) and a.e t ∈ [0, T ]

H(B) B : V → V ∗ is linear, bounded, symmetric and monotone, i.e.,
(a) B ∈ L(V, V ∗) and ∀ v ∈ V, ‖B(v)‖V ∗ ≤ c3‖v‖V with c3 > 0;
(b) 〈B(u), v〉 = 〈B(v), u〉 ≥ 0, ∀u, v ∈ V

H(ϕ) ϕ : [0, T ]×X → R is such that
(a) ϕ(., u) is measurable for all u ∈ X and ϕ(u, .) is proper, convex and lower
semicontinuous for a.e. t ∈ [0, T ]
(b) there exist a function a3 ∈ L2(0, T ) and c4 > 0 such that

‖η‖X∗ ≤ a3(t) + c4‖v‖X , ∀v ∈M, η ∈ ∂ϕ(t, v) a.e.t ∈ [0, T ]

(c) the mapping ∂ϕ(., .) is upper semicontinuous endowed with the weak topology
from X ×X to X∗.

H(J) J : [0, T ]×X −→ R is such that
(a) J(., v) is measurable on [0, T ] for all v ∈ X
(b) J(t, .) is locally Lipschitz on X for a.e t ∈ [0, T ].
(c) The growth condition holds ‖∂J(t, v)‖X∗ ≤ c0(t)+c1(t) for all v ∈ X a.e t ∈ [0, T ]
with c0 ∈ L2(0, T ) and c0 ≥ 0, c1 ≥ 0

H(L) the operator L : V → X is linear and compact with its adjoint operator L∗.

H(C) E : V −→ V ∗, α ∈ V and q : [0, T ]× [0, T ] 7−→ (V,V)
H(E) E ∈ L(V, V ∗).
H(q) The function q ∈ C([0, T ]× [0, T ],L(V, V )) is lipschitz continuous with respect
to the first variabl, i.e ther exists Lq > 0 such that ‖q(t1, s)− q(t2, s)‖ ≤ Lq|t1 − t2|
for all t1, t2, s ∈ [0, T ]
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H(f) f ∈ L2(0, T ;V ∗) and u0 ∈ V .

We have the following theorem of existence.

Theorem 2.1. Assume that assumptions H(A),H(B),H(ϕ),H(J), H(C) H(f) and H(L)
holds. Then the hyberbolic variational inequality (1) has a solution.

The proof of Theorem 2.1 is based on three basic steps.

1. We reformulate the hyperbolic variational inequality (1) as an inclusion.

2. We define time discrete family problems corresponding to the inclusion which solved
by surjectivity theorem.

3. We prove a convergence result. Hence, we deduce that the hyperbolic variational
inequality (1) has a solution.

3 A Dynamic contact frictional problem for viscoelastic ma-
terials

In this section, we consider a dynamic contact frictional problem for viscoelastic materials
and we prove existence of weak solution by using the abstract result in Section 2. The
friction condition is described with the evolutionary version of Coulomb law of dry friction,
More details can be found in [2].

4 Conclusion

As conclusion, it is evident that this study has shown that the hyperbolic variational
inequality (1) has a solution. Further study of the issue would be of interest when the
viscosity term is vanished in order to obtain an existence result for an elastodynamic
Signorini problem with Coulomb friction law.
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JUSTIFICATION OF THE TWO-DIMENSIONAL

EQUATIONS OF VON KÁRMÁN SHELLS

MARWA LEGOUGUI AND ABDERREZAK GHEZAL

Abstract. In this work, using the method of asymptotic expansions
with the thickness as the ”small” parameter, we show that the three-
dimensional for a nonlinearly elastic shells of Saint Venant-Kirchhoff
material with boundary conditions of von Kármán’s type, written in
curvilinear coordinates reduces to two-dimensional von Kármán model.

2010 Mathematics Subject Classification. 74B20, 74K25, 74G10.

Keywords and phrases. Nonlinear elasticity, shell theory, von Kármán
conditions, asymptotic analysis.

1. Introduction

The von Kármán equations are two-dimensional model for a nonlinearly
elastic plate subjected to boundary conditions of von Kármáns type. They
were initially proposed by von Kármán [7], which originating from contin-
uum mechanics and play an important role in applied mathematics. Next,
these equations are extended to Marguerre- von Kármán equations for a non-
linearly elastic shallow shell by Marguerre [6]. Then Ciarlet [1] and Ciarlet
and Paumier [2] justified the both of previous models by formal asymptotic
methods.

The asymptotic methods can be used for justifying the two-dimensional
models of elastic plates and shells starting from the three-dimensional mod-
els. Numerous works have been devoted to plates and shells in static case
(see, e.g., [3]-[4]). For dynamical case, we refer to Ghezal and Chacha [5].

A natural question arises as: How to extend the von Kármán and Marguerre-
von Kármán equations to the more general geometry of a shell?

2. Three-dimensional problem

Throughout this paper, we use the following conventions and notations:
Greek indices (except for ε), belong to the set {1, 2}, while Latin indices
belong to the set {1, 2, 3}, the symbols of differentiation ∂i = ∂

∂xi
, ∂εi = ∂

∂xεi
,

∂̂εi = ∂
∂x̂εi

, δij the Kronecker symbols. The summation convention with

respect to repeated indices is systematically used.
Consider a nonlinearly elastic shell with middle surface S = θ(ω̄) and

thickness 2ε > 0, its constituting material is a Saint Venant-Kirchhoff mate-
rial with Lam constants λε > 0 and µε > 0, where ω is a domain in R2 with
a boundary γ, and θ : ω̄ −→ E3 is a smooth enough injective immersion,
such that the two vectors aα(y) = ∂αθ(y) are linearly independent at all
points y ∈ ω̄, which form the covariant basis of the tangent plane to the
surface S = θ(ω̄).

1
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We define the mapping Θ : Ω̄ε −→ R3 as follow:

Θ(xε) = θ(y) + xε3a3(y), ∀(y, x3) ∈ Ω̄ε,

where

a3(y) = a3(y) =
a1 ∧ a2

|a1 ∧ a2|
.

The mapping Θ is assumed to be an immersion, the three vectors gi(x) =
∂iΘ(x), which are linearly independent at all points x ∈ Ω̄, thus form the

covariant basis at x̂ = Θ(x) ∈ ¯̂
Ω. For each ε > 0, we define the sets:

Ω̄ε = ω̄ × [−ε, ε], Γε0 = γ × [−ε, ε], Γε± = ω × {±ε}.
The shell is subjected to applied body forces in its interior Ω̂ε = Θ(Ωε), of

density (f̂ εi ) : Ω̂ε −→ R3, to applied surface forces on the upper and the

lower faces Γ̂ε± = Θ(Γε±), of density (l̂εi ) : Γ̂ε+ ∪ Γ̂ε −→ R3, and to horizontal

forces on the lateral face Γ̂ε0 = Θ(Γε0), which we are given the averaged

density (ĥε1, ĥ
ε
2, 0) : Θ(γ) −→ R3, after integration across the thickness of

the shell. The displacement verifies specific conditions on the lateral face, in
that only horizontal displacements are allowed along every vertical segment
of the lateral face.

We define the espace

V(Ω̂ε) = {v̂ε = (v̂εi ) ∈W 1 ,4 (Ω̂ε;R3); v̂εi = 0 on Γ̂ε0,

v̂εα is independent of x̂ε3 and v̂ε3 = 0 on Γ̂ε1},

Σ̂ε = {τ̂ ε = (τ̂ εij) ∈ (L2(Ω̂ε))9; τ̂ εij = τ̂ εji}.
The unknown displacement field ûε = (ûεi ) : {Ω̂ε}̄ → R3 satisfy the following
three-dimensional von Kármán shell problem in cartesian coordinates:

(C.P̂ ε)





−∂̂εj (σ̂εij + σ̂εkj ∂̂
ε
kû

ε
i ) = f̂ εi in Ω̂ε,

(σ̂εij + σ̂εkj ∂̂
ε
kû

ε
i )n̂

ε
j = l̂εi on Γ̂ε− ∪ Γ̂ε+,

ûεi = 0 on Γ̂ε0,



1
2ε

∫ +ε
−ε (σ̂εαβ + σ̂εkβ ∂̂

ε
kû

ε
α)νβdx

ε
3 = ĥεα on θ(γ1),

ûεα independent of x̂ε3 on Γ̂ε1,

ûε3 = 0 on Γ̂ε1,

the Piola-Kirchhoff stress tensor (σ̂εij) and the Green-Saint Venant strain

tensor (Êij(û
ε)) are given by
{
σ̂εij = λεÊεpp(û

ε)δij + 2µεÊεij(û
ε),

Êεij(û
ε) = 1

2(∂̂εi û
ε
j + ∂̂εj û

ε
i + ∂̂εi û

ε
m∂̂

ε
j û

ε
m),

3. Two-dimensional models

We define the covariant components uεm of the displacement field by:

ûεi (x̂
ε)êi = uεm(xε)gm,ε(xε), ∀x̂ε = Θ(xε) ∈ { ¯̂

Ωε},
where (êi) denotes the canonical basis of R3 and (gm,ε(xε)) is the contravari-
ant basis at the point x̂ε. The covariant basis (gεi (x

ε)), is given by

gεi (x
ε) = ∂εiΘ(xε), ∀xε ∈ Ωε.
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The Christoffel symbols and the covariant and contravariant components of
the metric tensor, defined by

Γk,εij = ∂εi g
ε
j .g

k,ε, gεij = gεi .g
ε
j g

ij,ε = gi,ε.gj,ε.

We define the contravariant components of the applied forces by

f̂ εi (x̂ε)êi = f i,ε(xε)gεi (x
ε), ∀xε ∈ Ωε,

l̂εi (x̂
ε)êi = li,ε(xε)gεi (x

ε), ∀xε ∈ Γε− ∪ Γε+,

h̄εi (y)ei = hi,ε(y)gεi (y, x3), ∀y ∈ γ1.

We define the following space

V(Ω) = {v = (vi) ∈W 1 ,4 (Ω;R3); v = 0 on Γ0,

vα is independent of x3, v3 = 0 on Γ1}.
Assume that the scaled unknown u(ε) = uεi admits a formal asymptotic
expansion of the form

u(ε) = u0 + εu1 + ε2u2 + ...,

with

u0 ∈ V(Ω) and up ∈W 1,4(Ω), ∀p ≥ 1.

The components of the applied forces are of the form

f i,ε(xε) = f i,0(x),

li,ε(xε) = εli,1(x),

hα,ε(y) = hα,0(y),

where the functions f i,0 ∈ L2(Ω) and li,1 ∈ L2(Γ+ ∪ Γ−) and hα,0 ∈ L2(γ)
are independent of ε.

We now give the main results of this work

Theorem 3.1. The leading term u0 is independent of the transverse vari-
able x3 and it can be identified with ζ0, which satisfies the following two-
dimensional variational problem:

ζ0 ∈ V(ω) = {η ∈W 1,4(ω); η = 0 on γ0, η3 = 0 on γ1},
∫

ω
aαβστE0

σ‖τF
0
α‖β(η)

√
ady =

∫

ω
P i,0ηi

√
ady + 2

∫

γ1

hβ,0ηαdγ,

for all η = (ηi) ∈ V(ω), where

E0
α‖β =

1

2
(ζ0
α‖β + ζ0

β‖α + amnζ0
m‖αζ

0
n‖β),

F 0
α‖β(η) =

1

2
(ηα‖β + ηβ‖α + amn{ζ0

m‖αηn‖β + ζ0
n‖βηm‖α}),

ηα‖β = ∂βηα − Γσαβησ − bαβη3 and η3‖β = ∂βη3 + bσβησ,

aαβστ =
4λµ

λ+ 2µ
aαβaστ + 2µ(aασaβτ + aατaβσ),

P i,0 =

∫ 1

−1
f i,0 + li,1− + li,1+ and li,1± = li,1(.,±1).
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4. Conclusion

An application of the technics from formal asymptotic analysis to the
three-dimensional model of nonlinearly elastic shells with boundary condi-
tions von Kármán type, made of a Saint Venant-Kirchhoff material, shows
that the leading term of the expansion is characterized by a two-dimensional
model.
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Anal. 73 (1980), 349-389.

[2] P.G. Ciarlet and J.C. Paumier, A justification of the Marguerrevon Kármán equa-
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L1-ASYMPTOTIC BEHAVIOR OF A FINITE ELEMENTMETHOD
FOR A SYSTEM OF PARABOLIC QUASI-VARIATIONAL IN-
EQUALITIES WITH NONLINEAR SOURCE TERMS
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1

Abstract. This paper is an extension and a generalization of the previous
results, cf. [3,6,8,11]. It is devoted to studying the �nite element approxi-
mation of the non coercive system of parabolic quasi-variational inequalities
related to the management of energy production problem. Speci�cally, we
prove optimal L1-asymptotic behavior of the system of evolutionary quasi-
variational inequalities with nonlinear source terms using the �nite element
spatial approximation and the subsolutions method.
Key Words : Quasi-variational inequalities, asymptotic behavior, sub-

solutions method, �nite elements approximation, L1-error estimate.
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LIPSCHITZ GLOBAL OPTIMIZATION PROBLEM AND

α-DENSE CURVES

DJAOUIDA GUETTAL AND MOHAMED RAHAL

Abstract. In this paper, we study a coupling of the Alienor method
with the algorithm of Piyavskii-Shubert. The classical multidimensional
global optimization methods involves great difficulties for their imple-
mentation to high dimensions. The Alienor method allows to transform
a multivariable function into a function of a single variable for which
it is possible to use efficient and rapid method for calculating the the
global optimum. This simplification is based on the using of a reducing
transformation called Alienor.
Keywords. The Alienor method, Algorithm of Piyavskii-Shubert,

Global optimization method, α-dense curves

1. Define the problem

Let us consider the following lipschitz global optimization problem



minF (x)
subject to gi(x) ≤ 0, i ∈ I
x ∈ Ω

where x = (x1, · · · , xn)T is the real vector of Rn represents the n variables,
I is a finite index set and Ω is a compact in Rn.
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MAPPED LEGENDRE SPECTRAL METHODS FOR

SOLVING A QUADRATIC HAMMERSTIEN INTEGRAL

EQUATION ON THE HALF LINE

RADJAI ABIR AND RAHMOUNE AZEDINE

Abstract. In this work, we introduce a new extension of the Legendre
spectral collocation method has been proposed for the numerical solution
of a quadratic Hammerstien integral equation on the half-line. The main
idea is to map the infinite interval to a finite one and use Legendre
spectral-collocation method to solve the mapped integral equation in
the finite interval. Numerical examples are presented to illustrate the
accuracy of the method.

Keywords and phrases. A quadratic Hammerstien integral equation,
Half-line, Mapped Legendre, Lagrange interpolation, Collocation points,
Error estimate.

1. Define the problem

The main objective of my work is to extend the Legendre spectral method
to a quadratic Hammerstien integral equation on the half-line of the forme:

(1) u(x) = a(x) + f(x, u(x))

∫ ∞

0
k(x, t)g(t, u(t))dt x ∈ R+

Where k(x, t), g(t, u(t)), a(x), and f are given continuous functions and u(x)
is unknown function.
In [1] Jozef Banas and Donal O’reganand and others using the technique of
measures of noncompactness with the classical Schauder fixed point prin-
ciple. Such an approach permits us to obtain our existence results under
rather general assumptions and In [2] the same others applying the Darbo
fixed point theorem to prove that the equation (1) has solution in the class
of real funtions defined bounded continous on the real half axis and having
limits at infinity. The present paper focuses on the numerical solution of
this kind of equations.

The method of solution is based on the reduction of the problem to a
finite interval [−1, 1] by means of a suitable family of mappings so that the
resulting singular equation can be accurately solved using spectral colloca-
tion at the Legendre-Gauss points. Several selected numerical examples are
presented and discussed to illustrate the application and effectiveness of the
proposed approach.
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Abstract : 

In this article, we study the transmission of COVID-19 in the human 

population, notably between potential people and infected people of 

all age groups. Our objective is to reduce the number of infected 

people, in addition to increasing the number of individuals who 

recovered from the virus and are protected. We propose a 

mathematical model with control strategies using two variables of 

controls that represent respectively, the treatment of patients 

infected with COVID-19 by subjecting them to quarantine within 

hospitals and special places and using masks to cover the sensitive 

body parts. Pontryagin's Maximum principle is used to characterize 

the optimal controls and the optimality system is solved by an 

iterative method. Finally, numerical simulations are presented with 

controls and without controls. Our results indicate that the 

implementation of the strategy that combines all the control 

variables adopted by theWorld Health Organization (WHO), produces 

excellent results similar to those achieved on the ground in Morocco. 
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MATHEMATICAL ANALYSIS OF A DYNAMIC

PIEZOELECTRIC CONTACT PROBLEM WITH FRICTION

KHEZZANI RIMI

Abstract. ...

2010 Mathematics Subject Classification. xxxx, xxxx, xxxx.

Keywords and phrases. elastic-viscoplastic piezoelectric materials;
internal state variable; normal compliance; wear; evolution equations;
fixed point.

1. Problem Statement

We consider the following physical setting. Let us consider two electro-
elastic- viscoplastics bodies, occupying two bounded domains Ω1, Ω2 of the
space Rd(d = 2, 3). For each domain Ωκ, the boundary Γκ is assumed to be
Lipschitz continuous, and is partitioned into three disjoint measurable parts
Γκ1 , Γκ2 and Γα3 on one hand, and on two measurable parts Γαa and Γαb , on
the other hand, such that meas(Γα1 ) > 0, meas(Γαa ) > 0. Let T > 0 and
let [0, T ] be the time interval of interest. The Ωα body is submitted to fα0
forces and volume electric charges of density qα0 . The bodies are assumed to
be clamped on Γα1 × [0, T ]. The surface tractions fα2 act on Γα2 × [0, T ]. We
also assume that the electrical potential vanishes on Γαa× [0, T ] and a surface
electric charge of density qα2 is prescribed on Γαb × [0, T ]. The two bodies can
enter in bilateral contact with friction along the common part Γ1

3 = Γ2
3 = Γ3.

The bodies are in contact with friction and wear, over the contact surface
Γ3. we introduce the wear function ω : Γ3 × [0, T ] −→ R+ which measures
the wear of the surface. The wear is identified as the normal depth of the
material that is lost. Let g be the intial gap between the two bodies. Let pν
and pτ denote the normal and tangential compliance functions. We denote
by v∗ and α∗ = ‖v∗‖ the tangential velocity and the tangential speed at
the contact surface between the two bodies. We use the modified version of
Archard’s law:

ω̇ = −λ0v∗σν .
To describe the evolution of wear, where λ0 > 0 is a wear coefficient. We
introduce the unitary vector δ : Γ3 −→ Rd defined by δ = v∗/‖v∗‖. When
the contact arises, some material of the contact surfaces worn out and im-
mediately removed from the system. This process is measured by the wear
function ω. With these assumptions above, the classical formulation of the
mechanical frictional contact problem with wear between two electro-elastic-
viscoplastics bodies is the following.

Problem P. For α = 1, 2, find a displacement field uα : Ωα×[0, T ] −→ Rd,
1
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a stress field σα : Ωα × [0, T ] −→ Sd, an electric potential field ψα :
Ωα × [0, T ] −→ R, a wear ω : Γ3 × [0, T ] −→ R+ and a electric dis-
placement field Dα : Ωα× [0, T ] −→ Rd and an internal state variable field
βα : Ωα × [0, T ] −→ Rm such that

σα(t) = Aαε(u̇α(t)) + Gαε(uα(t)) + (Eα)∗∇ψα(t)+
∫ t

0
Fα
(
σα(s)−Aαε(u̇α(s))− (Eα)∗∇ψα(s), ε(uα(s)), βα(s)

)
ds

in Ωα × [0, T ],

(1)

β̇α(t) = Θα
(
σα(t)−Aαε(u̇α(t))− (Eα)∗∇ψα(t), ε(uα(t)), βα(t)

)
in Ωα × [0, T ],

(2)

Dα(t) = Eαε(uα(t))− Bα∇ψα(t) in Ωα × [0, T ],(3)

ραüα = Divσα + fα0 in Ωα × [0, T ],(4)

divDα − qα0 = 0 in Ωα × [0, T ],(5)

uα(t) = 0 on Γα1 × [0, T ],(6)

σανα = fα2 on Γα2 × [0, T ],(7)

σ1ν = σ2ν ≡ σν , where σν = −pν(uν − ω − g) on Γ3 × [0, T ],(8)

σ1
τ = −σ2

τ ≡ στ , where στ = −pτ (uν − ω − g)
v∗

‖ v∗ ‖ on Γ3 × [0, T ],

(9)

u1ν + u2ν = 0 on Γ3 × [0, T ],(10)

ω̇ = −λ0α∗σν on Γ3 × [0, T ],(11)

ψα(t) = 0 on Γαa × [0, T ],(12)

Dα.να = qα2 on Γαb × [0, T ],(13)

uα(0) = uα0 , u̇α(0) = vα0 , βα(0) = βα0 in Ωα,(14)

ω(0) = ω0 on Γ3.(15)
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MATHEMATICAL STUDY AIMING AT ADOPTING AN

EFFECTIVE STRATEGY TO COEXIST WITH

CORONAVIRUS PANDEMIC

MOUMINE EL MEHDI, MAHARI SAID, KHAJJI BOUCHAIB, BALATIF OMAR,
AND RACHIK MOSTAFA

Abstract. In this paper, we propose a discrete mathematical model
that describes the evolution of the ”covid-19” virus in a human popu-
lation and the efforts made to control it. Our objective is to develop
a simple, logical and an optimal strategy to reduce the negative im-
pact of this infectious disease on countries. This objective is achieved
through maximizing the number of people applying the preventive mea-
sures recommended by WHO against the pandemic in order to reduce
the infection as much as possible. The tools of optimal control theory
were used in this study, in particular Pontryagin’s maximum principle.
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MÉTHODE DE HALLEY DANS UN ESPACE

ULTRAMÉTRIQUE

KECIES MOHAMED, BENHEMIMED LEYLA, AND DEKHMOUCHE KHOULOUD

Abstract. Ce travail est une application intéressante des outils de
l’analyse numérique à la théorie des nombres p-adiques avec p un nombre
premier. On verra comment utiliser la méthode numérique élémentaire
de Halley pour calculer les premiers chiffres des développements finis p-
adiques des racines cubiques 3

√
a d’un nombre p-adique a ∈ Qp à l’aide

d’une suite (xn)n de nombres p-adiques construite par la méthode de
Halley. La vitesse de sa convergence et le nombre d’itérations nécessaires
pour que (xn)n soit proche de 3

√
a avec une précision donnée M qui

représente le nombre de chiffres p-adiques dans le développement de 3
√
a

sont calculés.
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p-adique, racine cubique, développement p-adique, Méthode de Halley,
vitesse de convergence.
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NEW RESULTS ON THE CONFORMABLE FRACTIONAL

ELZAKI TRANSFORM

NOUR IMANE BENAOUAD, HAMID BOUZIT, AND DJILLALI BOUAGADA

Abstract. The fractional calculus has been used in the pure and ap-
plied branches of science and engineering in the present centuries. Resently
several types of fractional definitions are given, such as Riemann-Liouville,
Grunwald-Letnikov , Caputo’s fractional definition and a simple defini-
tion called ” Conformable fractional derivative” was proposed by Khalil
and al.(2014). The definition of conformable fractional derivative is sim-
ilar to the limit based definition of known derivative. This derivative
obeys both rule which other popular derivatives do not satisfy such as
the derivative product of two functions, Gronwall’s inequality, Taylor
power series expansions, chain rule, etc In this work we introduce a
new results of Elzaki transform with a conformable fractional motivated
by the fractional Laplace transform.

2010 Mathematics Subject Classification. 26A33, 42B10, 45F15.
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1. Define the problem

The objective of this work is to study the following problem: how to
calculate the Elzaki transformation of a conformable fractional derivative ?.
Our work is divided into two parts the first part concerns, some reminders
of the conformable fractional derivative and of the Elzaki transform, the
second part, will be devoted to generalise the formula of Elzaki transform to
the conformable fractional order and some interesting rules of this transform
and conformable fractional Laplace transform.
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NUMERICAL SOLUTION FOR FRACTIONAL ODES VIA

REPRODUCING KERNEL HILBERT SPACE METHOD:

APPLICATION TO A BIOLOGICAL SYSTEM

NOURHANE ATTIA, ALI AKGÜL, DJAMILA SEBA, AND NOUR ABDELKADER

Abstract. In this study, the numerical solutions for an essential frac-
tional ordinary differential equation has been investigated with the aid
of the reproducing kernel Hilbert space method (RKHSM). The con-
vergence analysis associated with the RKHSM is studied to provide the
theoretical basis of the suggested approach for solving the considered
problem. The numerical simulations are presented to show the accuracy
and reliability of the proposed method.
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NUMERICAL SOLUTION OF A CLASS OF WEAKLY

SINGULAR VOLTERRA INTEGRAL EQUATIONS BY

USING AN ITERATIVE COLLOCATION METHOD

KHEDIDJA KHERCHOUCHE AND AZZEDDINE BELLOUR

Abstract. An iterative collocation method based on the use of La-
grange polynomials is developed for the numerical solution of a class
of nonlinear weakly singular Volterra integral equations. The approx-
imate solution is given by explicit formulas and there is no algebraic
system needed to be solved. The error analysis of the proposed numeri-
cal method is studied theoretically. Some numerical examples are given
to show the validity of the presented method.

2000 Mathematics Subject Classification 45D05, 65R20

Keywords and phrases. nonlinear weakly singular Volterra integral
equation, Collocation method; Iterative Method, Lagrange polynomials.

1. Define the problem

In this work,we consider the following nonlinear weakly singular Volterra
integral equations,

(1) x(t) = f(t) +

∫ t

0
p(t, s)k(t, s, x(s))ds, t ∈ I = [0, T ],

where the functions f, k are sufficiently smooth and p(t, s) = sµ−1

tβ
,β > 0,

µ ≥ β + 1.
Equations with this kind of kernel have a weak singularity at t = 0.
Equation (1) is a particular case of the nonlinear of the so-called ”cordial”
integral equations, which were introduced by Vainikko in [1].
The existence and uniqueness result in Cm([0, T ]) for the nonlinear cordial
equations was obtained in [2].
Cordial integral equations are frequently encountered in some heat conduc-
tion problems with mixed-type boundary conditions [4, 5, 3].
The main goal of this work is to develop a collocation method based on the
use of Lagrange polynomials for the numerical solution of this equation.
The main advantages of this method that, is easy to implement, has high
order of convergence and the coefficients of approximate solution are deter-
mined by using iterative formulas without solving any system of algebraic
equations.
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NUMERICAL SOLUTION OF LINEAR FREDHOLM

INTEGRO-DIFFERENTIAL EQUATIONS

TAIR BOUTHEINA, GUEBBAI HAMZA, SEGNI SAMI, AND GHIAT MOURAD

Abstract. There are several phenomenons and problems in physics, bi-
ology and many other fields which are modelled by the integro-differential
equations. Recently, various researchers have constructed different meth-
ods to find an approximation solution for these types of equations. The
propose of our work is to study the solution’s existence and uniqueness
for the linear integro-differential Fredholm equation then we construct
an approximate solution by using the Nyström method. The study is
based on: Firstly, we transform the linear integro-differential Fredholm
equation to a linear Fredholm integral system and we build a sufficient
condition to show the solution’s existence and uniqueness of the system.
Secondly, we apply Nyström method, which discretizes the system of
integro-differential equations into solving a linear algebric system. Fi-
nally, we give a theorem to prove the convergence of the approximate
solution to the exact solution in C1[a, b].

2010 Mathematics Subject Classification. 45B05, 45J05, 47G20,
34K28, 45L05, 65R20.

Keywords and phrases. Fredholm integral equation, system of inte-
gral equations, integro-differential equations, Nyström method.

1. Problem position

Let X = C1[a, b] be the Banach space with the norm:

||u||X = max
a≤x≤b

|u(x)|+ max
a≤x≤b

|u′(x)|

Let u ∈ X be the solution of the following linear Fredholm integro-differential
equation:

∀x ∈ [a, b], λu(x) =

∫ b

a

K1(x, t)u(t) dt+

∫ b

a

K2(x, t)u′(t) dt+ f(x),(1)

where, λ is a complexe parameter, f and Ki, for i = 1, 2 are given functions.
We suppose that Ki, for i = 1, 2 satisfied the following hypotheses:

(H1)
∂Ki

∂x
(x, t) ∈ C0([a, b]2,R).

Then, the derivative u′ is given implicitly by

(2) ∀x ∈ [a, b], λu′(x) =

∫ b

a

∂K1

∂x
(x, t)u(t) dt+

∫ b

a

∂K2

∂x
(x, t)u′(t) dt+ f ′(x).

Theorem 1.1. If |λ| > (b − a)

(
max

a≤x,t≤b
|Ki(x, t)| + max

a≤x,t≤b
∂Ki

∂x
(x, t)

)
, for

i = 1, 2 the system (??)-(??) has a unique solution in X.
1
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Now, we construct an approximation of the system (??)-(??) based on the
Nyström method. First, we define

∆n = {a = x0 < x1 < · · · < xn−1 < xn = b},

be an uniforme subdivision of interval [a,b] with xj = a + jh and h = b−a
n ,

∀n ≥ 1.
Applying the Nyström method (see [?]) to our equation.

We obtain, ∀x ∈ [a, b]





λun(x) = h
n∑

j=0

ωjK1(xi, xj)un(xj) + h
n∑

j=0

ωjK2(xi, xj)u
′
n(xj) + f(x),

λu′n(x) = h
n∑

j=0

ωj
∂K1

∂x
(xi, xj)un(xj) + h

n∑
j=0

ωj
∂K2

∂x
K2(xi, tj)u

′
n(xj) + f ′(x),

where, {ωi}0≤i≤n called quadrature weights, such that sup
n≥1

n∑
i=0
|ωi| <∞.

Theorem 1.2. Under the assumption H1, the approximation solution un
converges to the exact solution in X.
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Mai 1945

Email address: tair.boutheina@univ-guelma.dz, tairboutheina2@gmail.com
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Laboratoire des Mathématiques Appliquées et Modélisation,Université 8
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NUMERICAL SOLUTION OF SECOND ORDER LINEAR

DELAY DIFFERENTIAL AND INTEGRO-DIFFERENTIAL

EQUATIONS BY USING TAYLOR COLLOCATION

METHOD

AZZEDDINE BELLOUR AND HAFIDA LAIB

Abstract. The main purpose of this work is to provide a numerical ap-
proach for linear second order differential and integro-differential equa-
tions with constant delay. An algorithm based on the use of Taylor poly-

nomials is developed to construct a collocation solution u ∈ S
(1)
m (ΠN )

for approximating the solution of second order linear DDEs and DIDEs.
It is shown that this algorithm is convergent. Some numerical examples
are included to demonstrate the validity of the presented algorithm.

2010 Mathematics Subject Classification. 45L05, 65R20.

Keywords and phrases. Second order delay linear differential equa-
tions, integro-differential equations, Collocation method, Taylor polyno-
mials.

1. Define the problem

In this work, we consider the second order linear Volterra integro-differential
equations (VIDEs) with constant delay τ > 0 of the form:

x′′(t) = g(t) + L0(t)x(t) + L1(t)x
′(t) +M0(t)x(t− τ) +M1(t)x

′(t− τ)

+

∫ t

0
k1(t, s)x(s)ds+

∫ t−τ

0
k2(t, s)x(s)ds,

(1)

for t ∈ [0, T ] and x(t) = Φ(t) for t ∈ [−τ, 0]. In the following we assume that
the given functions g, k1, k2, L0, L1,M0,M1 and Φ are sufficiently smooth.
Furthermore, we suppose that

Φ′′(0) = g(0) + L0(0)Φ(0) + L1(0)Φ′(0) +M0(0)Φ(−τ) +M1(0)Φ′(−τ)

−
∫ 0

−τ
k2(0, s)Φ(s)ds

Existence and uniqueness of the solution for Equation (1) can be easily
proved by using the conjunction of the iterative technique with Banach’s
fixed point theorem on the intervals [τ, 2τ ], [2τ, 3τ ], ...,.
The main goal of this work is to develop a collocation method based on
the use of Taylor polynomials for the numerical solution of the second order
linear VIDEs (1) with constant delay. The advantage of this collocation
method is: This method is explicit and direct, has a convergence order, and
there is no algebraic system needed to be solved, which makes the proposed
algorithm very effective, easy to implement.

1
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ON THE EXISTENCE OF A SOLUTION OF A

NONLINEAR EVOLUTION DAM PROBLEM

MESSAOUDA BEN ATTIA AND ELMEHDI ZAOUCHE

Abstract. Consider an arbitrary heterogeneous porous medium Ω of
R2 with an impermeable horizontal bottom and suppose that the func-
tion corresponding to the Darcy’s law is coercive only on one direction.
We adapt the Poincaré inequality for Ω and we apply techniques as in
[1] to prove the existence of a solution to a nonlinear evolution dam
problem.
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Keywords and phrases. Nonlinear evolution dam problem; hetero-
geneous porous medium with an impermeable horizontal bottom; exis-
tence.

1. The problem

Let A,B,D and T be real numbers such that B > A, T > 0 and let Ω
be a bounded domain in R2 with locally Lipschitz boundary ∂Ω := Γ and
horizontal bottom Γ1 = [A,B]× {D}. Ω represents a porous medium. The
boundary Γ is divided into two parts: an impervious part Γ1 and a pervious
Γ2 which is a nonempty relatively open subset of Γ. We are interested in
the motion of an incompressible fluid in Ω and in a time interval [0, T ] and
we are looking for a pair (p, χ) where p is the pressure of the fluid and χ a
function characterizing the wet part W of the dam. Let ϕ be a nonnegative
Lipschitz continuous function defined in Ω× (0, T ) := Q which represents
the assigned pressure on Γ2 × (0, T ) = Σ2. The velocity v and the pressure
of the fluid in W are related by a nonlinear Darcy’s law:

v = −a(x, (p+ x2)x2),

where x = (x1, x2) and a : Ω × R → R is a function satisfying x 7→ a(x, r)
is measurable for all r ∈ R, the function r 7→ a(x, r) is continuous for a.e.
x ∈ Ω and for some constants p > 1 and λ,Λ > 0 :

∀r ∈ R, a.e. x ∈ Ω : λ|r|p ≤ a(x, r)r,

∀r ∈ R, a.e. x ∈ Ω : |a(x, r)| ≤ Λ|r|p−1,

∀r1, r2 ∈ R, r1 6= r2, a.e. x ∈ Ω : (a(x, r1)− a(x, r2))(r1 − r2) > 0.

For convenience, we set φ = ϕ + x2, u = p + x2 and g = 1 − χ. Now,
we consider the following weak formulation of a nonlinear heterogeneous

1
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evolution dam problem:

(P)





Find (u, g) ∈ Lp(0, T ;W 1,p(Ω))× L∞(Q) such that :

u ≥ x2, 0 ≤ g ≤ 1, g(u− x2) = 0 a.e. in Q,

u = φ on Σ2,∫

Q

[
(a(x, ux2)− ga(x, 1))ξx2 + gξt

]
dxdt+

∫

Ω
g0(x)ξ(x, 0) dx ≤ 0

∀ξ ∈ W 1,p(Q), ξ = 0 on Σ3, ξ ≥ 0 on Σ4, ξ(x, T ) = 0 for a.e. x ∈ Ω,

where g0 is a function of the variable x such that

0 ≤ g0(x) ≤ 1 a.e. x ∈ Ω.

If we replace Ω by an arbitrary bounded open of R2 and (a(x, ux2)−ga(x, 1))ξx2
by (A(x,∇u) − gA(x, e)).∇ξ, where e = (0, 1) and A is an operator from
Ω × R2 into R2 satisfying x 7→ A(x, ξ) is measurable for all ξ ∈ R2, the
function ξ 7→ A(x, ξ) is continuous for a.e. x ∈ Ω,

∀ξ ∈ R2, a.e. x ∈ Ω : λ|ξ|p ≤ A(x, ξ) · ξ,
∀ξ ∈ R2, a.e. x ∈ Ω : |A(x, ξ)| ≤ Λ|ξ|p−1,

∀ξ, η ∈ R2, ξ 6= η, a.e. x ∈ Ω : (A(x, ξ)−A(x, η)) · (ξ − η) > 0,

∃ q > 1 such that div(A(x, e)) ∈ Lq(Ω),

the author in [1] established the existence of a solution by means of regu-
larization using the Tychonoff fixed point theorem. In this work, we adapt
the Poincaré inequality for our domain Ω and we apply such techniques as
in [1] to prove the existence of a solution for the problem (P ).
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ON THE MAXIMUM NUMBER OF LIMIT CYCLES OF A
SECOND-ORDER DIFFERENTIAL EQUATION

SANA KARFES AND ELBAHI HADIDI

Abstract. This work concerns the qualitative study of a perturbed
ordinary di¤erential equation of second order. We study the limit cycles
which can bifurcate from the center of the equation

(1) �x+ x = 0:

2010 Mathematics Subject Classification. 34C25, 34C29.

Keywords and phrases. Periodic solution, averaging method, di¤er-
ential system.

1. Define the problem

In this work, we study the maximum number of limit cycles bifurcating
from the periodic solutions of (1), when we perturb this equation as follows:

�x+ "(1 +Rm(�)) (x; y) + x = 0;

where " > 0 is a small parameter, m is an arbitrary non-negative integer,
 (x; y) is a polynomial of degree n � 1 and � = arctan( yx) and R is a
trigonometric function. We determine an upper bound for the maximum
number of limit cycles in equation (2) in the four cases where m and n are
even and odd. The main tool used for proving this result is the averaging
theory of �rst order.
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ON THE NUMERICAL SOLUTION OF FIRST ORDER

HYPERBOLIC EQUATIONS ON SEMI-INFINITE DOMAINS

REMILI WALID AND RAHMOUNE AZEDINE

Abstract. This paper proposed a numerical method for solving first
order hyperbolic equations on semi-infinite domains. The method of so-
lution is based on the transformation of the original problem by means
of a suitable mapping and one use the classical Jacobi polynomials col-
location method to solve the mapped hyperbolic equation. This is by
using the properties of Jacobi polynomials with the vec-operation and
Kronecker product to reduce the hyperbolic equation to a system of
linear algebraic equations with unknown Jacobi coefficients. Finally,
some numerical examples are presented to illustrate the efficiency of the
proposed method compared with other approaches.
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1. Define the problem

Partial differential equations (PDEs) on semi-infinite domains are en-
countered as model in many fields of science and engineering such as the
earthquake engineering field and underwater acoustic problems. In this
work, we consider the hyperbolic PDEs on semi-infinite domains of the
form

(1) ∂tu(x, t) = a1∂xu(x, t) + a2u(x, t) +K(x, t), x, t ∈ [0,∞),

with the following condutions

u(0, t) = g1(t), u(x, 0) = g2(x), x, t ∈ [0,∞),(2)

where g1, g2,K are given sufficiently smooth functions and a1, a2 are con-
stants whereas u is unknown function to be determined. The numerical
solution of hyperbolic equation type (1) with conditions (2) have been dis-
cussed by many authors. For instance, the authors of [1] have used gener-
alized Laguerre-gauss-radau scheme for solving E.q (1) with conditions (2).
Exponential Jacobi-Galerkin method proposed from the authors of [2] to
solve E.q (1) with conditions (2). The aim of this work is to extend the
Jacobi polynomials for solving Eq. (1). This is by using algebraic and ex-
ponential mappings (see [3]) given by the following formulas, in which the
constant s > 0 sets the length scale of the mappings

* Algebraic map

(3) y = θs(x) =
x− s
x+ s

, x = ψs(y) = s(
1 + y

1− y ), s > 0.

1
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* Exponential map

(4) y = θs(x) = 1− 2e−x/s, x = ψs(y) = −s ln(
1− y

2
), s > 0,

such that

y = θs(x) = ψ−1s (x), x ∈ R+ and
dx

dy
= θ′s(y) > 0, y ∈ (−1, 1),

θs(0) = −1, θs(+∞) = 1 and ψs(−1) = 0, ψs(1) = +∞.
The essential idea in our approach is to substitute x by ψ(y, s) into the
hyperbolic equation (1) and (2), and then applying the Jacobi polynomials
collocation method to solve the resulting equation, wtich defined as

∂zus(y, z)θ
′
s(z) = a1θ

′
s(y)∂yus(y, z)

+ a2us(y, z) +Ks(y, z), y, z ∈ (−1, 1),(5)

with the following condutions

us(−1, z) = gs1(z), us(y,−1) = gs2(y), y, z ∈ (−1, 1),(6)

where

us(y, z) = u(ψs(y), ψs(z)) , Ks(y, z) = k(ψs(y), ψs(z)),

gs1(z) = g1(ψs(z)) , gs2(y) = g2(ψs(y)),

The classical Jacobi polynomials Jα,βn (y) (n ≥ 0) are defined by (see[4])

(1− y)α(1 + y)βJα,βn (y) =
(−1)n

2nn!

dn

dyn
{(1− y)n+α(1 + y)n+β}, y ∈ (−1, 1).

Let wα,β(y) = (1−y)α(1+y)β be the Jacobi weight function, for α, β > −1.
The Jacobi polynomials are mutually orthogonal in L2

wα,β
(−1, 1), i.e.,

(7) (Jα,βn , Jα,βm )wα,β =

∫ 1

−1
Jα,βn (y)Jα,βm (y)wα,β(y)dy = γα,βn δn,m,

where δn,m is the Kronecker function, and

(8) γα,βn =
2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)

(2n+ α+ β + 1)Γ(n+ 1)Γ(n+ α+ β + 1)
.
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ON COMPUTATIONAL AND NUMERICAL SIMULATIONS

OF THE RIEMANN PROBLEM FOR TWO-PHASE FLOWS

CARBON DIOXIDE MIXTURES.

SOUHEYLA OUFFA AND DJAMILA SEBA

Abstract. In this work, we provide a computational simulations for
the complete and exact solution to the Riemann problem for a one-
dimensional two-phase carbon dioxide mixtures. Where the solution is
obtained by solving the conservation of mass for each phase, the mixture
conservation momentum equation and the mixture conservation energy
equation of the two phases under conditions. And we present numerical
simulations in conjuction with a computational simulations , it is Go-
dunov’s scheme which provides satisfactory results. numerical methods
are provided to demonstrate the use of the exact framework and the
proposed calculation.

2010 Mathematics Subject Classification. 35L65, 74S10, 35Lxx,
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Keywords and phrases. Conservation laws, finite volume methods,
hyperbolic systems, two-phase flow, numerical methods.

1. Define the problem

In this paper, we study model describing a two-phase flow of a carbon
dioxide mixture where we suggest a different solution for this model. The
model is a system of coupled nonlinear hyperbolic differential equations. The
purpose of this study is to provide a detailed presentation of the complete
and accurate solution to the Riemann problem associated with the proposed
model. The solution depends on conservation laws in a one-dimensional do-
main along with initial data separated by a single discontinuity, the solution
is created under a set of suggestions and assumptions. Firstly we present the
mathematical model that describes flow equations and illustrates Riemann’s
related problem. Then, we offer the elementary waves of the Riemann prob-
lem solution and build different waves based on the analytical solution. After
that, description of solution strategy, and show a complete solution to the
Riemann. then we extend the Godunov method in conjuction with the ex-
act solution and the method of a second-order Godunov centred where the
solution of the Riemann problem is fully numerical. Furthermore we con-
duct several tests with various problems dealing with shock and rarefaction
waves to validate the presented analytical solution. Finally, we present the
conclusion based on the results .
We obtain accurate analytical solutions based on the Riemann problem from
the model equations program by main program that is being written. These
are also evaluated numerically against the methods in which the Riemann
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solution is completely digital. Then We compare them .An excellent agree-
ment was indicated between analytical results and numerical forecasts.
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ON A VISCOELASTIC WAVE EQUATION OF INFINITE

MEMORY COUPLED WITH ACOUSTIC BOUNDARY

CONDITIONS

ABDELAZIZ LIMAM, YAMNA BOUKHATEM,
AND BENYATTOU BENABDERRAHMAN

Abstract. This work deals with a coupled system of viscoelastic wave
equation of infinite memory. The coupling is via by the acoustic bound-
ary conditions. The semigroup theory is used to show the global exis-
tence of solution. Moreover, we investigate exponential stability of the
system taking into account Gearhart-Prüss’ theorem.

2010 Mathematics Subject Classification. 35A01, 74B05, 93D15.

Keywords and phrases. viscoelastic damping, global existence, ex-
ponential stability.

1. Define the problem

In this paper, we consider the following viscoelastic wave equation coupled
with mixed boundary conditions

(1)





utt − div(A∇u) +
∫ +∞
0 g(s)div(A∇u(t− s))ds = 0 in Ω× R+

u = 0 on Γ0 × R+
∂u
∂νA
−
∫ +∞
0 g(t− s) ∂u

∂νA
(s)ds = zt on Γ1 × R+

hztt + fzt +mz + ut = 0 on Γ1 × R+

u(x, 0) = u0(x), ut(x, 0) = u1(x) for x ∈ Ω
z(x, 0) = z0(x), zt(x, 0) = z1(x) for x ∈ Γ1,

where Ω is a bounded domain of Rn (n ≥ 1) with a smooth boundary Γ =
Γ0∪Γ1, such that Γ0 and Γ1 are closed and disjoint and ν = (ν1, · · · , νn) rep-

resents the unit outward normal to Γ, and the operator A =
(
aij(x)

)
1≤i,j≤n

.

The above model would be to describe the motion of fluid particles from
rest in the domain Ω into part of the surface at a given point x ∈ Γ1,
which can be expressed by the pressure at that point. The relationship
between the velocity potential ut = ut(x, t) at a point on the surface and
the normal displacement z = z(x, t) is proportional to the pressure. It is
called the acoustic impedance. This impedance may be complex in the case
of the velocity potential was not in phase with the pressure. The coupling of
our model (1) is via by the impenetrability boundary condition (1)3 and the

acoustic boundary condition (1)4. Note that the term
∫ +∞
0 g(s)div(A∇u(t−

s))ds is the infinite memory (past history) responsible for the viscoelastic
damping, where g is called the relaxation function. The functions h, f,m :
Γ1 → R+ are essentially bounded such that h(x) ≥ h0, f(x) ≥ f0 and
m(x) ≥ m0 for a.e., and u0, u1 : Ω→ R, z0 : Γ1 → R are given functions.

1
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The partial differential equation (PDE) system of viscoelastic wave equa-
tion with acoustic boundary conditions was first introduced by Morse and
Ingard [13] and developed by Beale [2], and Beale-Rosencrans [3]. In [2], the
problem was formulated as an initial value problem in a Hilbert space and
semigroup methods were used to solve it. The loss of decay has obtained by
[2] provided that the term ztt was included. Recently, the result concern-
ing existence and asymptotic behavior of smooth, as well as weak solution
of wave equation with acoustic boundary conditions have been established
by many authors, see [6, 8, 11, 12]. Boukhatem and Benabderrahmane [5],
studied the global existence and the exponential decay of solution of the
system (1) in the absence of the second derivative ztt. This absence brings
us some difficulties in the study because of the abnormality of the system.
It can not apply directly the semigroups theory or Faedo-Galerkin’s proce-
dure. They added in the argument the term εztt when ε → 0 to overcome
the difficulty.

The primary discussion touched upon by several authors is to use the
integral term of relaxation function g instead of the damping term ut. The
question that have been focused their attention as an important works is the
viscoelastic damping of memory effect should be strong enough to procreate
the decay of the system.

One of important motivations to studying exponential stability of the
associated semigroup comes from the spectral analysis. This purpose recalls
the related results given by Gearhart-Prüss’ theorem (see [9, 14]). It is
shown that all eigenvalues approach a line that is parallel to the imaginary
axis. Moreover, the resolvent operator is bounded for all eigenvalues of the
generator associated. The proof is the combination of the contradiction
argument with a PDE technique. Let us mention some papers on weakly
dissipative coupled systems. In [10], the exponential decay is established of
both wave equations are damped on the boundary. For weak damping acting
only one equation, the lack of exponential decay to coupled wave equations
was studied in [1, 7]. The authors obtained the optimal polynomial decay
by using the recent result due to Borichev and Tomilov [4].

Our main result is devoted to study the global existence and the exponen-
tial stability of solution of (1), in which we analyze the spectral distribution
in the complex plane. The semigroup theory is used to show the global
existence of solution that its real part decreases with time. Motivated by
the mentioned works above concerning Gearhart-Prüss’ theorem, the expo-
nential stability is concluded.
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ON SOLUTIONS OF BRATU-TYPE DIFFERENTIAL

EQUATIONS OF FRACTIONAL ORDER

ALI KHALOUTA

Abstract. Recently, nonlinear differential equations of fractional or-
der (NDEFO) have attracted the attention of many researchers due to
a wide range of applications in many fields of pure and applied mathe-
matics such as: physics, fluid mechanics, electrochemistry, viscoelastic-
ity, nonlinear control theory, nonlinear biological systems, hydrodynam-
ics and other fields of science and engineering . In all these scientific
fields, it is important to find exact or approximate solutions to these
problems. There is therefore a marked interest in the development of
methods for solving problems related to NDEFO. The exact solutions
to these problems are sometimes too complicated to achieve by conven-
tional techniques due to the complexity of the nonlinear parts involving
them.

The aim of this talk is to present an analytical method called the
general fractional residual power series method (GFRPSM) to find an
analytical solution of a certain class of NDEFO in particular, Bratu-type
differential equations of fractional order in the form

(1) Dαu(x) + λ exp (u(x)) = 0, 0 < x < 1, λ ∈ R,
with the initial conditions

(2) u(0) = a0, u
′(0) = a1,

where Dα is the Caputo fractional derivative of order α, 1 < α ≤ 2.
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Keywords and phrases. Bratu-type equation, Caputo fractional de-
rivative, residual power series method, analytical solution.
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ON THE SOLUTION OF A CONTROL PROBLEM OF A

VACCINE-CONTROLLED EPIDEMIC

BOUREMANI TOUFFIK AND BENTERKI DJAMEL

Abstract. We use some recent developments in Dynamics Program-
ming Method to obtain a rigorous solution of the optimal control prob-
lem formulated in [11] using Pontryagin’s Maximum Principle. We use
a certain refinement of Cauchy’s Method of characteristics for stratified
Hamilton-Jacobi equations to describe a large set of admissible trajec-
tories and to identify a domain on which the value function exists and is
generated by a certain admissible control and, its optimality is justified
by the use of one of the well-known verification theorems as an argument
for sufficient optimality conditions.

2010 Mathematics Subject Classification. 49J15, 49L20, 34A60

Keywords and phrases. Optimal control, Differential inclusion, Pon-
tryagin’s maximum principle, Dynamic programming, Hamiltonian flow,
Value function, Verification theorem.

1. Introduction

The aim of this paper is to apply step by step the dynamic programming
theoretical algorithm, described in [5, 6] as well as, to combine these results
with numerical procedures, to obtain a more rigorous and complete theoret-
ically justified solution of the problem formulated as Example 7.3.10 in [11].
In fact, in [11], this problem is proposed to answer only a certain question,
in the context of the using Pontryagin’s Maximum Principle [1, 2, 3, 10, 11],
but not to be studied in the rigorous manner in contrast to what we do
below.

The importance of this theme comes to the fore with the unfortunate
COVID-19 pandemic and the need to discover its crypts by introducing it
as dynamic models amenable to study, by using recent results in control
theory.

2. Position of the problem

In [11] it has been considered a population affected by an epidemic, that
is being tried to stop by vaccination. This leads us to solve the optimal
control problem of minimizing the cost functional:

(1)





C (u) = αx2 (T ) +
∫ T
0 u (t)2 dt,

x′1 = −rx1x2 + u (t) , x1 (0) = x10
x′2 = rx1x2 − γx2 − u (t) , x2 (0) = x20
x′3 = γx2, x3 (0) = x30
x0 ∈ R3

+, x (T ) = xT , u (t) ∈ [0, a] , t ∈ [0, T ], T fixed,

the functions involved have the following Medical virology significance:
1
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For t ∈ [0, T ];

• x1(t): the number of non-infectious, but contaminable individuals,
• x2 (t): the number of infectious individuals, who can infect others,
• x3 (t): the number of individuals infected, and missing, or isolated

from the rest of the population;
• u (t): the vaccination rate (which is actually the control function),
• r > 0: the rate of infection;
• γ > 0: the disappearance rate.

2.1. The dynamic programming formulation. In order to the use the
Dynamic Programming Approach in [5, 6], we reformulate the problem in
(1) using standard notations in Optimal Control Theory and embedding this
problem in a set of problems associated to each initial point in the phase-
space as in [7, 8]. Thus, we obtain the following standard Bolza autonomous
optimal control problem:

Given T, a > 0, find:

(2) inf
u(.)
C (y, u (.)) , ∀y ∈ Y0

subject to:

(3)
C (y, u (.)) = g (x (T )) +

∫ T
0 f0 (x (t) , u (t)) dt,

x′(t) = f(x(t), u(t)), u (t) ∈ U (x(t)) a.e. ([0, T ]), x (0) = y,
x (t) ∈ Y0, ∀t ∈ [0, T ), x (T ) ∈ Y1, T fixed

defined by the following data:

(4)
f (x, u) = (−rx1x2 + u, rx1x2 − γx2 − u, γx2) , f0 (x, u) = u2,
U (x) = U = [0, a] , g (ξ) = αξ2, ∀ξ = (ξ1, ξ2, ξ3) ∈ Y1,
Y0 = R∗+, Y1 = int (Y1) ⊂ R∗+.

The first main computational operation consists in the backward integra-
tion (for t ≤ 0), of the Hamiltonian inclusion:

(5) (x′, p′) ∈ d#SH(x, p), (x(0), p(0)) = z = (ξ, q) ∈ Z∗1 ,

defined by the generalized Hamiltonian field d#SH(., .):

(6)
d#SH(x, p) = {(x′, p′) ∈ T(x,p)Z; x′ ∈ f(x, Û(x, p)),
< x′, p > − < p′, x >= DH(x, p)(x, p), ∀ (x, p) ∈ T(x,p)Z},

and, the set of terminal transversality values defined in the general case by:

(7) Z∗1 = {(ξ, q) ∈ Z, ξ ∈ Y1, H(ξ, q) = 0, < q, ξ >= Dg(ξ)ξ, ∀ ξ ∈ TξY1}.
As it is specified in the algorithm given in [5, 6], for each terminal point

z = (ξ, q) ∈ Z∗1 one should identify the maximal flows: X∗(.) = (X(.), P (.)) :
I(z) = (t−(z), 0] → Z, of the Hamiltonian inclusion in (5) that satisfy the
following admissibility conditions :

(8)

X(t) ∈ Y0, ∀ t ∈ I0(z) = (t−(z), 0)
H(X(t), P (t)) = 0, ∀ t ∈ I(z)

X ′(t) = f(X(t), u(t)), u(t) ∈ Û(X∗(t)) a.e. I0(z).
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The characteristic flow allow the identification of a subset of the set of
initial states on which an optimal control and the corresponding value func-
tion are described, while the optimality is proved using a suitable Elementary
Verification Theorem for value functions [2, 4, 5].
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Optimization of a PDE Problem and
Application

Abdelkadir Soudani1, Abdellah Menasri2 and Khaled Saoudi 3

Abstract
In this paper we are interested in solving a hyperbolic PDE type, with

some techniques based on the temporal discretization, the variational for-
mulation and the intervention of the Lax-Milgram theorem. We have well
answered the question of well-posed differential problems, likeable to approx-
imation by known, reliable and compliant numerical methods such as finite
elements.

The problem of the choice of our theme is the result of a reflection on
the improvement of the approximation and the precision of the solution com-
pared to the methods mentioned above.

Keywords
Hyperbolic problem, Optimization, The Galerkin-Newton method, Vari-

ational Formulation, PDE, finite element method.
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1.Problem Definition
Let Ω a bounded open of Rn, of a boudary Γ sufficiently regular and
0 ≤ T ≤ ∞. Given a function

f : Ω −→ Rn,

Find the function
u : Ω× (0, T ) −→ Rn,

such as :

(P )





∂2

∂t2 u(t, x)−∆u(t, x)− ∂

∂t
∆u(t, x) = f (x, t) ∈ Ω× (0, T ), (1.1)

u(0, x) = 0 on Ω, (1.2)
∂

∂t
u(0, x) = 0 on Ω, (1.3)

u | Γ× (0, T ) = 0, (1.4)
∆u | Γ× (0, T ) = 0, (1.5)

Where f is a function given in L2(Ω).
Our idea is presented by a contribution based on a combination of some

known methods, where we involved some methods of optimizations, such as
the method of energy minimization in the theoretical part, existence and
uniqueness of the solution and method of Galerkin-Newton, in the numerical
part and finally with an application. We achieved some satisfactory results!

2

351



Bibliography

[1] J. A. Desideri. Intoduction à l’analyse numérique. INRIA, 1998.

[2] Brezis, H: Analyse fonctionnelle et application. Collection Math. Appl.
Masson,Paris, 1983.

[3] P.A. Raviart and JM Thomas. Introduction à l’analyse numérique des
équations aux dérivées partielles,

[4] C. Berthon and R. Turpault.Asymptotic preserving HLL schemes. Nu-
merical Methods for Partial Differential Equations, 27(6):1396–1422,
November 2011.

[5] C. Chalons, F. Coquel, E. Godlewski, P.A. Raviart, and N. Seguin.
Godunov-type schemes for hyperbolic systems with parameter dependent
source. The case of Euler system with friction. Math. Mod. Math. Appl.
Sci., 20(11), 2010.

[6] P. Charrier, B. Dubroca, L. Mieussens, and R. Turpault. Discrete-velocity
models for numerical simulations in transitional regime for rarefied flows
and radiative transfer. IMA Volumes in Mathematics and its Applica-
tions, 2003.

[7] P.G. Ciarlet, Introduction à l’analyse numérique et à l’optimisation, Mas-
son 1982,

[8] Ciarlet, P.G., The Finite Element Method for Elliptic Problems (North-
Holland, Amsterdam), 1978.

[9] Ciarlet, P.G. (1991), Basic error estimates for elliptic problems in:
Handbook of Numerical Analysis II (North-Holland,Amsterdam) 17-
352,[9] J.A. Desideri. Introduction à l’analyse numérique. INRIA, 1998.

[10] R. Duclous, B. Dubroca, and M. Frank. Deterministic partial differential
equation model for dose calculation in electron radiotherapy. Phys. Med.
Biol., 55 :3843–3857, 2010.

3

352



[11] G. Gassner, M. Dumbser, F. Hindenlang, and C. D. Munz. Explicit
one-step time discretizations for discontinuous galerkin and finite volume
schemes based on local predictors. J. Comput. Phys., 230 :4232–4247,
2011.

[12] Robert T. Glassey. The Cauchy problem in kinetic theory. SIAM, 1996.

[13] E. Godlewski and P.A. Raviart. Hyperbolic systems of conservations
laws, volume 118 of Applied Mathematical Sciences. Springer, 1995.

[14] F. Lörcher, G. Gassner, and C.-D. Munz. A Discontinuous Galerkin
scheme based on a space–time expansion. I. Inviscid compressible flow in
one space dimension. J. Sci. Comput., 32(2) :175–199, 2007.

[15] J. Baranger. Analyse numérique. Hermann, 1988.

[16] BOUCH, I.: Application of Galerkin Method to Problem Varitional,
Math. Slovaca, 1981.

[17] KACUR, J. : Method of Galerkin in Evolution Equation, 1985.

[18] Ciarlet,P.G., Basic error estimates for elliptic problems in: Handbook of
Numerical Analysis, Vol. VII, pp. 713-1020. Edited by P.G. Ciarlet and
J.L.Lions (north Holland), 1991.

1. Laboratory of ICOSI University of Khenchela
email address: soudaniabdelkadir@yahoo.com

2. Département de génie des procédés, Université Salah Boubnider, Con-
stantine.
email address: abdellah.menasri@univ-constantine3.dz

3. Laboratory of ICOSI University of Khenchela
email address: saoudikhaled@hotmail.com

4

353



QUADRATIC DECOMPOSITION OF 2−ORTHOGONAL

POLYNOMIALS SEQUENCES

CHADIA FAGHMOUS1, KARIMA ALI KHELIL2,
AND MOHAMMED CHERIF BOURAS3

Abstract. In this work, we are interested in the quadratic decompo-
sition of 2-monic orthogonal polynomials sequences (2−MOPS). We
obtain the necessary and sufficient conditions for a monic polynomials
sequence to be 2−orthogonal in terms of the sequences of the quadratic
decomposition. Moreover, we obtain the links between the recurrence
coefficients and the sequences of the quadratic decomposition. Also, we
give the necessary and sufficient conditions for its principal components
sequences to be orthogonal.

2010 Mathematics Subject Classification. 42C05, 33C45.

Keywords and phrases.. 2−Monic orthogonal polynomials ; Qua-
dratic decomposition; 2−Symmetric MOPS..

1. Define the problem

from the quadratic decomposition of 2− orthogonal polynomials sequences
generate new sequences and study their properties.
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STABILITY PROBLEM FOR AN EPIDEMIOLOGICAL

MODEL (COVID-19)

SAADIA BENBERNOU, DJILLALI BOUAGADA, AND BOUBAKEUR BENAHMED

Abstract. The recent outbreak of the deadly and highly infectious
COVID-19 disease caused by SARS-CoV-2 in Wuhan and other cities
in China in 2019 has become a global pandemic as declared by World
Health Organization (WHO) in the first quarter of 2020. In this work,
our aim is to develop an SEIR mathematical model in order to minimize
the number of the infected individuals and to study the impact of a
control strategies. The proposed model is also studied in term of stability
using the formula for calculating basic reproduction number R0, and
also an other approach to test stability of the model using state space
approach is derived.

Keywords and phrases. Covid-19. SEIR model . Basic reproduction
number. Stability. Optimal Control
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STATIONARY AND NON STATIONARY

APPROXIMATIONS BY RBFS FOR SOLVING INTEGRAL

AND PARTIAL DIFFERENTIAL EQUATIONS

DALILA TAKOUK AND REBIHA ZEGHDANE

Abstract. In this work, we give stationary and non stationary approx-
imation by radial basis functions (RBFs) interpolation for solving inte-
gral and partial differential equations, The aim is to analyze the conflict
between the theoritically achievable accuracy and numerical stability.
The theoritical convergence rates may be difficult to achieve computa-
tionally due to the condition number of the resulting matrix growing
with decreasing both fill distance and shape parameter. In this pa-
per, we analyse the efficiency and applicability of the two approaches
for scattered data approximation by globally and compactly supported
RBFs, for solving some integral and partial differential equations. Some
approximate solutions are considered by using numerical examples. Fi-
nally, some concluding remarks and ideas for future work are provided
in the last section.
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1. Introduction

Mesh methods gained much attention in recent years in mathematics and
engineering community [1, 2, 3, 4, 5]. This meshfree discretisation tech-
niques are based only on a set of independent points, therefore the costs of
mesh generation is eliminated. It can be seen that this type of approxima-
tion provide a generation of numerical tools and it is more reliable than the
traditional numerical methods such as finite element and difference meth-
ods which are limited to problems involving two or three parameters (space
dimension). In this work, we present two sets of interpolation experiments
with globally and compactly supported radial basis functions. We use non
stationary approach to interpolation i.e, the support size remains fixed for
increasingly danser sets of data sizes, on the other hand, we use the sta-
tionary approach, i.e, we scale the support size of the radial basis functions
proportionally to the fill distance. We give a comparaison between the two
approaches, and their computational complexity, for this, we take the gauss-
ian, multiquadrics and some wendland’s compactly supported radial basis
functions to interpole some functions in one and two dimensional spaces. We
use equally spaced grid in the unit square, and some nodes of orthogonal
polynomials. The rate of convergence is determined, this rate is the expo-

nent of the RMS error given by the formula rate=
ln(ek−1/ek)

ln(hk−1/hk)
, k = 2, 3, ...

1
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where ek is the error for experiment number k and hk is the fill distance of
the computional mesh. The problem of mesh approximation by radial basis
functions is as follow. Radial basis function to scattered data (xi, fi) ∈ Rn+1

for pairwise distincts points (centers) x1, x2, . . . , xN ,∈ Rn, using a function
φ : R+ −→ R to construct the interpolant

S(x) =
N∑

j=1

cjφ(‖ x− xj ‖),

Via the linear system

(1) S(xi) =
N∑

j=1

cjφ(‖ xi − xj ‖) = fi = f(xi), 1 ≤ i, j ≤ N.

Which leads to the linear matrix system AC = f ,
whereA = (aij) = φ(‖ xi−xj ‖), C = [c1, c2, . . . , cN ]T , f = [f1, f2, . . . , fN ]T .
For wide choices of functions φ, the non singularity of the system (1) can

be assured for the follwing radial basis functions

Table 1. Choices of φ for which the interpolation matrix is invertible.

Name φ(r)

Gaussian e−εr
2

ε > 0
Multiquadric

√
r2 + ε2 ε > 0

Inverse Multiquadric
1√

r2 + ε2
ε > 0

Wendland’s CSRBFs (Φ3,1(r)) (1− r)4+(1 + 4r) C2 ∩ PD3

Wendland’s CSRBFs (Φ4,2(r)) (1− r)6+(3 + 18r + 35r2) C4 ∩ PD3

We assume F (r) = φ(
√
r) to be conditionally strictly positive definite

of order zero [2], which implies that A is a positive definite matrix, so the
problem is well posed i.e, there exists a unique solution if and only if A is in-
vertible. In the univariate setting it is well knwon that one can interpolation
to arbitrary data at N distinct sets, using a polynomial of degree N−1, but
for the multivariate settings, how even there is the negative results which
due to curtis theorem (1959) [1] that there exist no Haar spaces of continu-
ous functions except for one dimensional. For the use of shifts of one single
basis function makes the radial basis approach particularly elegant and very
attractive. This radial basis functions method depends on a shape param-
eter. So in this work we will clearly see the effects of the shape parameter
on the condition number of the interpolation matrix therefore the numeri-
cal stability of our computations. Numerical studies, such as comparaison
between the two approaches in the sense of accuracy and computational
costs have been done, that illustrate the superior accuracy of each approach
compared to solve both integral and partial differential equations.
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STUDY ON HOPF BIFURCATION FOR COMPRESSION

QUASI-LINEAR SYSTEM,

NAIMA MESKINE

Abstract. Bifurcation analysis plays an important role in determining
the phases of transition from an aerodynamic instability to another.
This analysis is one of the main methods used for the study of nonlinear
and quasi-linear systems for unsteady state. In our case, this study is
applied to a compression model with an axial compressor. This model
is developed from two principles: the first is the principle of movement
at local equilibrium on the compressor and the second is based on the
principle of mass balance of the plenum whose state functions of the
system are the mass flow, mr, and pressure, Pp. A parametric study
following eigenvalues made it possible to define the different domains of
instability where a detailed set of conditions guarantees the existence of
the Hopf bifurcation. A numerical simulation is presented to illustrate
this analytical study.

2010 Mathematics Subject Classification. 34C23, 34D20, 35B35.

Keywords. Axial compressor, Hopf bifurcation, Surge and Rotating
Stall.
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SOME RESULTS ON THE ASYMPTOTIC BEHAVIOUR OF
SOME ANISOTROPIC SINGULAR PERTURBATION

PROBLEMS

SALIMA AZOUZ

Abstract. The rate of asymptotic convergences in [1] is mentioned and
shown far away from the boundary layers. In the present work we would
given some boundary layer functions to get an asymptotic behaviour
results on the whole domain for an anisotropic singular perturbation
problems of an elliptic type.

Keywords and phrases. Anisotropic, singular perturbations, bound-
ary layers, correctors, elliptic, boundary layer functions, rate of conver-
gence.
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STABILITY ANALYSIS AND OPTIMAL CONTROL OF A

FRACTIONAL-ORDER MODIFIED HIV/AIDS MODEL

NOUAR CHORFI, SALIM ZIDI, AND SALEM ABDELMALEK

Abstract. The fact that fractional-order models possess memory leads to modeling a
fractional-order HiV/AIDS. We discuss the fractional order dynamics of HIV/AIDS model
studied in [2]. We have divided the total population into five classes, namely (susceptible
individuals, infective individuals who do not know that they are infected, HIV positive in-
dividuals who know that they are infected and that of the AIDS population). We prove
that the proposed model has two distinct equilibria (disease-free equilibrium and the pos-
itive endemic equilibrium). Using the stability theorem, we establish the local stability of
the disease-free equilibrium subject to the basic reproduction number being smaller than to
unity, on the other hand, the endemic equilibrium subject to the basic reproduction being
greater than unity. We have also discuss the previous model with three controls strategies
of condom use u1, screening of unawar infectives u2 and treatment of unaware u3.whose
diagram is shown in Figure 1. Thus, the model is given by :

c
0D

α
t S(t) = Q− βmS − µS,

c
0D

α
t I1(t) = βmγS − (u2θ + π + µ)I1,

c
0D

α
t I2(t) = (1− γ)βmS + u2θI1 − (δ + u3κ+ µ)I2,

c
0D

α
t H(t) = u3κI2 − (σδ + µ)H,

c
0D

α
t A(t) = πI1 + δI2 + σδH − (β + µ)A.

where

βm =
(1− u1) (β1c1I1 + β2c2I2 + β3c3A)

N
.

The controls strategies aimed at controlling of the spread of HIV/AIDS epidemic. The
objective functional is defined as :

J(u1, u2, u3) =

∫ T

0

(
aI1 + b1u

2
1 + b2u

2
2 + b3u

2
3

)
dt.

Our aim here is to minimize the number of unaware infectives I1, while minimizing the
cost control u12, u2 and u3. Then we seek an optimal control u∗

1, u∗
2 and u∗

3 such that

(u∗
1, u

∗
2, u

∗
3) = min {J (u1, u2, u3) : u1, u2 and u3 ∈ U} ,

where U is the admissible control set defined by

U = {(u1, u2, u3) : 0 ≤ ui ≤ 1, t ∈ [0, T ] , for i = 1, 2, 3} .
We give a general formulation for a FOCP and derive the necessary conditions for its

optimality .

Finally, the numerical simulation using the Adams-type predictor corrector method to
solve the fractional optimal control of the model, shows that this strategy helps to reduce
the number of infected and the cost of control .

Keywords and phrases. HIV/AIDS model, Stability analysis, Fractional optimal control.
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Figure 1. Flow Diagram of a fractional-order for the Modified HIV/AIDS
disease transmission model with control.
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STABILIZATION OF FRACTIONAL ORDER CHAOTIC

MODIFIED CHUA SYSTEM USING A STATE-FEEDBACK

CONTROLLER

SAKINA BENRABAH AND SAMIR LADACI

Abstract. In this paper, we consider the problem of chaos stabilization
for fractional order Chua’s modified system with cubic nonlinearity. A
state feedback controller is designed in order to force the system to
converge to a stationary orbit. Simulation results are given to illustrate
the effectiveness of the proposed control strategy.

2010 Mathematics Subject Classification. 26A33, 34H10, 93B52,
93D15.

Keywords and phrases. Fractional order system, Chaos, Chua mod-
ified system, Stabilization, State feedback control.

1. Define the problem

The fractional order form of Chua system is modelled as follows:

(1)
x(q) = a(y − x3) + bx

y(q) = x− y − z

z(q) = cy

By varying the total system order incrementally from 3.6 to 3.7, it is demon-
strated that systems of ”order” less than three can exhibit chaos as well as
other nonlinear behavior. In particular, it presents a chaotic behavior for
the parameters q = 0.96 ; a = 10 ; b = 0.143; c = 16, as stated by Hartley
et al. [1] and Cafagna and Grassi [2].
Stability analysis of the chaotic system is studied for the fractional Chua
chaotic system in closed loop by a linear state feedback given by,

(2) U = KX

Where U is the control vector, K is a gain matrix, and X is the state vector.
By an adequate adjustment of the gain K, we are able to stabilize the system
on its stable orbits.
Numerical simulations are presented to show the effectiveness of the pro-
posed fractional feedback method as shown in Figure 1, obtained for for
q = 0, 96 and K = 0.58.
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(a) (b)

Figure 1. Fractional order chaotic Chua system. (a) With-
out control. (b) with a state feedback control.
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THE LIMIT CYCLES OF TWO CLASSES OF CONTINUOUS

PIECEWISE CUBIC DIFFERENTIAL SYSTEMS SEPARATED BY

A STRAIGHT LINE

REBIHA BENTERKI

Abstract. The main goal of this paper is to provide the maximum number of

crossing limit cycles of continuous piecewise differential systems separated by
the straight line y = 0 formed by a cubic isochronous center and an quadratic

center. We prove that these piecewise differential systems can have at most
two crossing limit cycles.
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The numerical analysis of Schwarz algorithm for a
class of elliptic quasi variational inequalities

1Bouzoualegh Ikram&2 Saadi Samira
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Abstract
In this work, we study a Schwarz algorithm for a class of elliptic quasi-variational

inequalities, where the obstacle depends to the solution.The author proved the er-
ror estimate in L∞-norm for m subdomains with overlapping nonmatching grids
using the geometrical convergence and the uniform convergence of variational in-
equalities.

Keywords: variational inequalities; Schwarz algorithm; finite element method; L∞

error estimate
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THE NUMERICAL SOLUTION OF LARGE-SCALE

DIFFERENTIAL T-RICCATI MATRIX EQUATIONS

LAKHLIFA SADEK, EL MOSTAFA SADEK, AND ALAOUI HAMAD TALIBI

Abstract. In the present paper, we consider large-scale symmetric dif-
ferential T-Riccati matrix equations. So far, it presents an unexplored
problem in numerical analysis, theoretical results, and computational
methods, which are lacking in the literature. we show how to apply
the Krylov method such as the extended block Arnoldi algorithm to get
low-rank approximate solutions. The initial problem is projected onto
small subspaces to get low-dimensional symmetric differential equations
that are solved using the Rosenbrok method. And report some numer-
ical experiments to show the effectiveness of the proposed method for
large-scale problems.
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Keywords and phrases. extended block Arnoldi, Low-rank method,
differential T-Riccati matrix equation, T-Sylvester equation, Rosenbrock
method.
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UNIFORM CONVERGENCE OF MULTIGRID METHODS
FOR VARIATIONAL INEQUALITIES

BELOUAFI MOHAMMED ESSAID, BEGGAS MOHAMED,
AND HAIOUR MOHAMED

Abstract. In this paper, we will apply the Multi-Grid Method for
Variational Inequalities, in the measure where the obstacle depond of the
solution. Moreover, we prove the uniforme convergence of this multi-grid
algorithm with Gauss-Seidel�s iteration as smoothing procedure.

Keywords and phrases. Variational inequality, Quasi-variational el-
liptic inequality, Multigrids methods, �nite di¤erences, �nite element,
Approximations.

1. Define the problem

1.1. The continu problem. Let 
 be an open in Rn, with su¢ ciently
smooth boundary @
 for u; v 2 H1(
), consider the bilinear form as follows:

(1.1) a(u; v) =

Z



[
X

1�i;j�n
aij(x)

@u

@xi

@v

@xj
+

X
1�i;j�n

ai(x)
@u

@xi
+ a0(x)u � v]dx

- Where aij (x) ; ai (x) ; a0(x); x 2 
; 1 � i; j � n are su¢ ciently smooth
coe¢ cients and satisfy the following conditions:P

1�i;j�n
aij i j � �j j2;  2 Rn; � > 0

a0 (x) � � > 0;

-Where � is a constant.
We consider the following problem: Find u 2 H1

0 (
) the solution of

(1.2)
�
a (u; v � u) � (f; v � u) in 
; v 2 H1

0(
)
u �  ; v �  ;  � 0

Were f 2 L1 (
) ; f � 0;  2W 2;1 ; tel que  > 0:

1.2. The discrete problem. We denote by Vh the standard piecewise lin-
ear �nite element space ( where Vh form an internal approximation), we
consider the discrete quasi-variational inequality Find uh 2 V h such that

(2.1)
�
a (uh; vh � uh) � (f; vh � uh) 8uh;vh 2 V h

uh �rh ; vh �rh 
1
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2. Description of the Multigrid Method for VIs

Let hk be the discretization step over 
. The �nite element discretization
conventionally leads to the discrete IV solution in �nite dimension:
Find uk 2 Vk such as:

(3.1)
�
hAkuk; vk�uki� hf; vk � uki ; 8vk 2 Vk

uk �rk k ; vk �rk k
put an iterated uvk; v > 0; we �rst determine �uvk by pk applications of a

relaxation method
Note that:

(3.2) �uvk = Spkk (uvk)

or :
Sk is the iteration or smoothing operator
pk is the number of iterations performed.
it is clear to verify that the IVs (7) are equivalent to the following PCNs.
Find uk 2 Rnk solution of

(3.4)
�

Aku
�
k � F k ; u

�
k � rk k


Aku
�
k � F k ; u

�
k � rk k

�
= 0

Let us pose:

(3.5) d
(�)
h = Ak�u

j
k � Fk; le r�esidu de uvk

It is immediate that the solution u�k of the problem (9) at the level k
satis�es the following complementary problem:

(3.6)

(
Aku

�
k �Avkuk � d

(v)
k ; u�k � rk kD

Aku
�
k�Ak�uvk + d

(v)
k ; u�k � rk k

E
= 0

So to determine uk completely, we need the calculate uk�1 at level (k � 1)
as being the solution of:

(3.7)
�

Ak�1uk�1 � gk�1 ; uk�1 � rk k

Ak�uk�1 � gk�1 ; uk�1 � rk k

�
= 0

Where :

(3.8) gk�1 = Akr:�u
v
k � r:d

(v)
k

and r is the natural restriction

(3.9) r = r�1k�1:rk

we can interpret uk�1 � rk�1k �uvk as an approximation at the level k � 1 of
the error u�k � �u�k.
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Consequently, using an appropriate prolongation pkk�1 : R
Nk�1 ! RNk we

determine an improved iteration at the level k by

(3.10) uv+1k = �u�k + p
k
k�1

�
uk�1 � rk�1k �uvk

�
We are going to state a theorem of existence and unicity for the

solution of the problems (1.2) and (2.1), and we will prove the
convergence of Multigrid method for our problem (2.1).
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UZAWA METHODS FOR A LINEAR SYSTEM WITH

DOUBLE SADDLE POINT STRUCTURE ARISING IN

SHELL THEORY

KHENFER SAKINA AND MERABET ISMAIL

Abstract. We consider Uzawa methods for solving a linear system
with double saddle point structure arises in the finite element discretiza-
tion of linear shell theory problems through the contact problem of a
Naghdi’s shells with a rigid obstacle in Cartesian coordinates.

2010 Mathematics Subject Classification. 65M60, 65F10, 65N30.

Keywords and phrases. Naghdi’s shell model, Uzawa’s method, con-
tact, finite elements.

1. Define the problem

The considered model is the unilateral contact of a shell with an obstacle
which is actually one of the most currently used for numerical computa-
tions. The derivation of the model is based on the fundamental laws of
elasticity and a priori geometrical assumptions which lead to constrained
system. The resulting system is equivalent to a double mixed problem (i.e.,
a mixed problem with a double Lagrange multiplier) combining variational
equalities and inequalities. The solution of the variational problem is sought
in a functional space where some functional constrains must be satisfied.
Unfortunatns can not be implemented in standard conforming way. Mixed
methods can overcame this numerical difficulty efficiently. In this considered
problem the mixed formulation is defined by mean of three bilinear forms.
The continuous problem, written in mixed form takes the following form:

Find (U,ψ, λ) ∈ X(ω)×M(ω)× Λ such that:




∀V ∈ X(ω), aρ(U, V ) + b(V, ψ)− c(V, λ) = L(V )

∀χ ∈M(ω), b(U, χ) = 0

∀µ ∈ Λ, c(U, µ− λ) ≥ 〈Φ, µ− λ〉
(1)

where, X(ω), M(ω) and Λ are three Hilbert spaces. The bilinear form a(,
) is coercive on X(ω) and (b + c)(, ) satisfies the usual inf-sup condition.
Standard finite element discretization of the variational problem leads to a
large, sparse linear systems of equations of the form:

AU +BTψ − CTλ = L
BU = 0

(µ− λ)TCU ≥ (µ− λ)Tφ

(2)

where A ∈ Rn×nis symmetric positive definite (SPD),B ∈ Rm×nand C ∈
Rp×n with n ≥ m+ p.
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Throughout this work, Uzawa-type stationary methods is discussed. We
present convergence results and eigenvalue bounds together.
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Abstract.The aim of this work is to study the optimal control strategy of a mathematical model of
the COVID-19 transmission in the discrete case, and to investigate, in discrete time, optimal control
strategie in which the controls are: quarantine and/or treatment. The studied population is divided
into five compartments SIIrIuR. Our objective is to find the best strategy to reduce the number of
I. So, the Pontryagin’s maximum principale, in discrete time, is used to characterize the optimal
control. the numerical simulation is carried out using MATLAB. the obtaind results confirm the per-
formance of the optimization strategy.
Key words: Optimal control
Discrete epidemec model
Quarantine,Treatment
Pontryagin’s maximum principale.
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ALMOST G-CONTACT METRIC STRUCTURES ON LIE

GROUPS

BELDJILALI GHERICI, ALAYACH NOOR, AND BORDJI ABDELILLAH

Abstract. Starting from only a global basis of vector fields, we con-
struct a class of almost contact metric structures and we give concrete
example. Next, we investigate these structures on 3 and 5-dimensional
Lie groups.

2010 Mathematics Subject Classification. 53C25, 53C15.

Keywords and phrases. Almost contact metric manifolds, Global
basis. Lie Groups

1. Define the problem

Fortunately, the rich theory of vector spaces endowed with a Euclidean
inner product can, to a great extent, be lifted to various bundles associated
with a manifold. The notion of global (and local) frame plays an important
technical role.
It should be mentioned however that a global basis of X(M) ( the Lie algebra
of smooth vector fields on a manifold M) i.e., n vector fields that are linearly
independent over F(M) and span X(M), does not exist in general.

Manifolds that do admit such a global basis for X(M) are called paral-
lelizable. it is straightforward to show that a finite-dimensional manifold is
parallelizable if and only if its tangent bundle is trivial (that is, isomorphic
to the product, M × Rn).

As an illustration, we can prove that the tangent bundle, TS1, of the
circle, is trivial. Indeed, we can find a section that is everywhere nonzero,
i.e. a non-vanishing vector field, namely

X(cosθ, sinθ) = (−sinθ, cosθ).

The reader should try proving that TS3 is also trivial (use the quaternions).
However, TS2 is nontrivial, although this not so easy to prove.

More generally, it can be shown that TSn is nontrivial for all even n ≥ 2.
It can even be shown that S1, S3 and S7 are the only spheres whose tangent
bundle is trivial. This is a rather deep theorem and its proof is hard.

Here, starting from a Global frame we construct a class of almost con-
tact metric structures, specifically, many well-known almost contact metric
structures ( Sasakian, cosymplectic, Kenmotsu ) and we confirm the con-
struction each time with a concrete example showing that the case is non-
vacuous. Next, we determine such structures on three and five-dimensional
Lie algebras by direct calculation. We use the classification of three and
five-dimensional Lie algebras given in [6].
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CRYPTOGRAPHY OVER THE ELLIPTIC CURVE Ea,b(A4)

BY USING A PASSWORD

BILEL SELIKH

Abstract. We consider A4 := F3d [ε] = F3d [X]/(X4) is a finite quo-
tient ring, where ε4 = 0 and F3d is the finite field of order 3d with d
be a positive integer. In this work, we introduce a diagram of cryp-
tography based this ring. Firstly, we study the elliptic curve over this
ring. Furthermore, we study the algorithmic properties by proposing
effective implementations for representing the elements and the group
law. Finally, we give an example cryptographic with a secret key.

2010 Mathematics Subject Classification. 94A60, 11T71, 11Y40,
14H52, 11T55.

Keywords and phrases.Cryptography, Elliptic Curves, Finite Rings,
Finite Field.

1. Define the problem

The problem in this paper is based on a cryptographic application over
the elliptic curves E(A4), so that we construct the subgroup G generated by
a point P from E(A4). Next, we give each point of G a code and express it
with a letter or symbol, and then define the encryption scheme by using a
password, so that every message crypted is converted into a code and sent
to the recipient.
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CLASSIFICATION OF MINIMAL SURFACES IN

LORENTZ-HEISENBERG 3-DIMENSIONAL SPACE

BENSIKADDOUR DJEMAIA

Abstract. We first investigate the minimal translation surfaces i.e
(surfaces with null mean curvature H = 0) in the 3-dimensional Lorentzian
Heisenberg space H3 endowed with a left invariant metric g1, we study
six types of them. Then, we give the explicit expression of each type.

2010 Mathematics Subject Classification. 53A45, 53C20.

Keywords and phrases. Lorentzian Heisenberg 3− Space, Lorentzian
metric, Translation surfaces, Minimal surfaces, Mean curvature.

1. Introduction

Lorentzian spaces, more precisely three dimensional Lie groups equipped
with a left-invariant Lorentzian metric constitute the goal of several mod-
ern researches in pseudo-Riemannian geometry. The space H3, is a three
dimensional Cartesian space with respect to the following product

(x, y, z) ∗
(
x′, y′, z′

)
=
(
x+ x′, y + y′, z + z′ − xy′

)
,

for any (x, y, z) and (x′, y′, z′) of H3. The identity of this group is (0, 0, 0)
and the inverse of each element (x, y, z) ∈ H3 is (−x,−y,−xy − z). Since a
Lie group is a smooth manifold, we can endow it with a Riemannian metric.
N. Rahmani and S. Rahmani proved in their article ([6]), that modulo an
automorphism of the Lie algebra of the Heisenberg group H3 there exist
three classes of left invariant Lorentzian metrics

g1 = −dx2 + dy2 + (xdy + dz)2 ,(1)

g2 = dx2 + dy2 − (xdy + dz)2 ,

g3 = dx2 + (xdy + dz)2 − [(1− x) dy − dz]2 .

2. Main results

2.1. Minimal translation surfaces in (H3, g1). In this section, we present
some results on the characterization of the curvature of translation surfaces
in the 3− dimensional Lorentzian Heisenberg space H3 endowed with the
following left invariant Lorentzian metric

g1 = −dx2 + dy2 + (xdy + dz)2.

2.1.1. Minimal surface equations in (H3, g1). Let Σ be a surface in the
Lorentzian Heisenberg 3−space H1 which represents the graph of the func-
tion z = f(x, y), it is parameterized by

X : U ⊆ R2 → R3

(x, y) 7→ (x, y, f(x, y))
1
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Proposition 2.1. The surface Σ defined above is a minimal surface in
3−dimensional Lorentzian Heisenberg space H3 if and only if it’s mean cur-
vature H satisfies the following condition

(2) H =
1

2W 3

[
(P 2 − 1)fyy + (Q2 + 1)fxx − 2PQfxy − PQ

]
= 0.

2.1.2. Some types of minimal translation surfaces in (H3, g1). A translation
surface Σ (γ1, γ2) in H3 is a surface parameterized by

X : Σ → H3

(x, y) 7→ X(x, y) = γ1 (x) ∗ γ2 (y)
,

and obtained as a product of two generating not orthogonal curves γ1 and
γ2 situated in the planes of coordinates of R3. Since the multiplication ∗ in
the Lorentzian Heisenberg space is not commutative, then for each choice
of curves γ1 and γ2 we may construct two translation surfaces, namely Σ
(γ1, γ2) and Σ (γ2, γ1) which are different. In this section we define and
study four types of translation surfaces in the 3−dimensional Lorentzian
Heisenberg space (H3, g1) .

2.1.3. Surfaces of type 1 and 2. Let the curves γ1 and γ2 be given by γ1(x) =
(x, 0, g(x)) and γ2(y) = (0, y, h(y)), where g and h are two arbitrary surfaces.

Theorem 2.2. The minimal translation surfaces Σ in the 3−dimensional
Lorentzian Heisenberg space (H3, g1) of type 1 are parameterized by X(x, y) =
(x, y, g(x) + h(y)− xy) where

g(x) = ax+ x0, with a, x0 ∈ R

and

h(y) =
c

2

[
(y − a)

√
|(y − a)2 − 1| − ln

∣∣∣(y − a) +
√
|(y − a)2 − 1|

∣∣∣
]
+y0, with (c, y0 ∈ R) .

Theorem 2.3. The minimal translation surfaces Σ in the 3−dimensional
Lorentzian Heisenberg space (H3, g1) of type 2 are parameterized by X(x, y) =
(x, y, g(x) + h(y)) where

h(y) = ay + b

and

g(x) =
1

2

[
(x+ a)

√
(x+ a)2 + 1 + sinh−1(x+ a)

]

with a and b are real constants.

2.1.4. Surfaces of type 3 and 4. Let now the curves γ1 and γ2 be given by
γ1(x) = (x, 0, g(x)) and γ2(y) = (h(y), y, 0), where g and h are two arbitrary
surfaces.

Theorem 2.4. The minimal translation surface Σ of type 3 in the 3−dimensional
Lorentzian Heisenberg space (H3, g1) are parameterized by

X(x, y) = (x, 0, g(x)) ∗ (h(y), y, 0) = (x+ h(y), y, g(x)− xy)

where g(x), and h(y) are given by
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Theorem 2.5. The minimal translation surfaces Σ of type 4 in the 3−dimensional
Lorentzian Heisenberg space (H3, g1) are parameterized by

X(x, y) = (h(y), y, 0) ∗ (x, 0, g(x)) = (x+ h(y), y, g(x)),

where h(y) is an affine function h(y) = ay + b, a and b are real constants
such as a 6= ±1 and g(x) is given by

• if x2 + 1− a2 ≥ 0, then

g(x) =
1

2

[
x
√
x2 + 1− a2 + ln(x+

√
x2 + 1− a2)− ln(x+

√
x2 + 1− a2)a2

]
− a

1− a2x
2,

• if x2 + 1− a2 < 0, then

g(x) =
1

2

[
x
√
−x2 − 1 + a2 − tan−1

x√
−x2 − 1 + a2

+ tan−1(
x√

−x2 − 1 + a2
)a2
]
− a

1− a2x
2.
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COMPLETE SYMMETRIC FUNCTIONS AND BIVARIATE
MERSENNE POLYNOMIALS.

SOUHILA BOUGHABA AND ALI BOUSSAYOUD

Abstract. In this work, we give some new generating functions of bi-
variate Mersenne polynomials and the products of bivariate Mersenne
polynomials with bivariate complex Fibonacci polynomials, bivariate
complex Lucas polynomials, Jacobsthal and Jacobsthal Lucas numbers,
Jacobsthal and Jacobsthal Lucas polynomials, and the products of bi-
variate Mersenne polynomials with Gaussian numbers and polynomials.
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Bivariate Mersenne polynomials, Bivariate complex Fibonacci polyno-
mials.

1. Define the problem

In this contribution, we shall de�ne a useful operator denoted by �ke1e2
for which we can formulate, extend and prove new results based on our
previous ones, see [4, 6, 7] In order to determine generating functions of bi-
variate Mersenne polynomials and the products of bivariate Mersenne poly-
nomials with bivariate complex Fibonacci polynomials, bivariate complex
Lucas polynomials, Jacobsthal and Jacobsthal Lucas numbers, Jacobsthal
and Jacobsthal Lucas polynomials, and the products of bivariate Mersenne
polynomials with Gaussian numbers and polynomials.
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COMPLETE HOMOGENEOUS SYMMETRIC FUNCTIONS
OF BINARY PRODUCTS OF GAUSSIAN (p; q)-NUMBERS
WITH MERSENNE LUCAS NUMBERS AT POSITIVE AND

NEGATIVE INDICES

NABIHA SABA AND ALI BOUSSAYOUD

Abstract. In this work, we study the Mersenne Lucas numbers and
some Gaussian (p; q)-numbers. We introduce a operator in order to
derive some new symmetric properties of Gaussian (p; q)-Fibonacci and
Gaussian (p; q)-Lucas numbers, Gaussian (p; q)-Pell and Gaussian (p; q)-
Pell Lucas numbers. By making use of the operator de�ned in this work,
we give some new generating functions for the products of Gaussian
(p; q)-numbers with Mersenne Lucas numbers at positive and negative
indices.

2010 Mathematics Subject Classification. Primary 05E05; Sec-
ondary 11B39.

Keywords and phrases. Mersenne Lucas numbers, Gaussian (p; q)-
numbers, symmetric functions, generating functions.

1. Define the problem

In this contribution, we shall de�ne a useful operator denoted by �2�le1e2 for
which we can formulate, extend and prove new results based on our previ-
ous ones, see [5], [1] and [6]. In order to determine some new generating
functions for the products of Gaussian (p; q)-Fibonacci numbers, Gaussian
(p; q)-Lucas numbers, Gaussian (p; q)-Pell numbers, Gaussian (p; q)-Pell Lu-
cas numbers with Mersenne Lucas numbers at positive and negative indices.
In particular, the new generating functions of the products for Gaussian Fi-
bonacci, Gaussian Lucas, Gaussian Pell and Gaussian Pell Lucas numbers
with Mersenne Lucas numbers at positive and negative indices are obtained.
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DERANGEMENT POLYNOMIALS WITH A COMPLEX

VARIABLE

ABDELKADER BENYATTOU

Abstract. In this paper, we define the derangement polynomials with
a complex variable and we give some properties of these polynomials.

2010 Mathematics Subject Classification. 11B83, 30C10.
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able.

1. Introduction

Derangement polynomials are defined by

Dn (x) = n!
n∑

k=0

(x− 1)k

k!
.

It is clear that Dn (0) is the n-th derangement number, denoted by Dn
counting the number of permutation of the set [n] := {1, ..., n} without
a fixed point. The exponential generating function for the derangement
polynomials is

(1)
∞∑

n=0

Dn (x)
tn

n!
=

e−t

1− te
xt.

For more information about these numbers and polynomials one can see
[1, 2, 3, 4, 5].

If we replace x by z or z in (1), where

z = x+ iy, z = x− iy, i2 = −1,

we get

∞∑

n=0

Dn (z)
tn

n!
=

e−t

1− te
(x+iy)t =

e−t

1− te
xt (cos (yt) + i sin (yt))

∞∑

n=0

Dn (z)
tn

n!
=

e−t

1− te
(x−iy)t =

e−t

1− te
xt (cos (yt)− i sin (yt)) .

If we add or subtract the identities presented above, we get

∞∑

n=0

[Dn (z) +Dn (z)]
tn

n!
=

2e−t

1− te
xt cos (yt)

∞∑

n=0

[Dn (z)−Dn (z)]
tn

n!
=

2ie−t

1− t e
xt sin (yt) .
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Let Dn,1 (z) = Dn (z)+Dn (z) , and Dn,2 (z) = Dn (z)−Dn (z) , then we have

∞∑

n=0

Dn,1 (z)
tn

n!
=

2e−t

1− te
xt cos (yt) ,

∞∑

n=0

Dn,2 (z)
tn

n!
=

2ie−t

1− t e
xt sin (yt)

That is now

cos (yt) =
eiyt + e−iyt

2
, sin (yt) =

eiyt − e−iyt
2i

,

then
∞∑

n=0

Dn,1 (z)
tn

n!
=

e−t

1− te
xt
(
eiyt + e−iyt

)

=
∞∑

n=0

Dn (x)
tn

n!

∞∑

n=0

[(iyt)n + (−iyt)n]

n!

=
∞∑

n=0

Dn (x)
tn

n!

∞∑

n=0

(iy)n (1 + (−1)n)
tn

n!

=
∞∑

n=0

1

n!

n∑

k=0

(
n

k

)
Dk (x) (iy)n−k

(
1 + (−1)n−k

)
tn.

Hence

Dn,1 (z) =
n∑

k=0

(
n

k

)
Dk (x) (iy)n−k

(
1 + (−1)n−k

)
,

Dn,2 (z) =
n∑

k=0

(
n

k

)
Dk (x) (iy)n−k

(
1− (−1)n−k

)
.

The derangement polynomials with a complex variable can be defined by

Dn (z) =
n∑

k=0

(
n

k

)
Dk (x) (iy)n−k ,

and we can write Dn (z) as follows

Dn (z) = in
n∑

s=0

(−1)s
(
n

2s

)
D2s (x) yn−2s−in+1

n∑

s=0

(−1)s
(

n

2s+ 1

)
D2s+1 (x) yn−2s−1.

The first few polynomials are:

D0 (z) = 1,

D1 (z) = x+ iy,

D2 (z) = x2 − y2 + 1 + 2xyi,

D3 (z) = x3 + 3x− 3xy2 + 2 + i
(
−y3 + 3x2y + 3y

)
.

In particular, for y = 0 or x = y = 0, we have

Dn (z) = Dn (x) , Dn (0) = Dn.
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DERANGEMENT POLYNOMIALS WITH A COMPLEX VARIABLE 3

2. Some properties of the derangement polynomials with a
complex variable

Now we give some properties of the derangement polynomials with a
complex variable

Lemma 2.1. For any non-negative integer n, we have

Dn (z) =
n∑

k=0

(n)k

[
k∑

s=0

(x− 1)s

s!

]
(iy)n−k .

where (n)k is the falling factorial defined by

(n)k = n (n− 1) · · · (n− k + 1) if n ≥ 1 and (n)0 = 1.

Proposition 2.2. For any non-negative integer n there holds

Dn+1 (z) = (n+ 1)Dn (z) + (z − 1)n+1 ,

Dn+2 (z) = (n+ 1) [Dn+1 (z) +Dn (z)] + (z − 1)n+1 + (z − 1)n+2 .

The first few Dn (z) polynomials can be written as follows

D0 (z) = 1,D1 (z) = z,D2 (z) = z2 + 1,D3 (z) = z3 + 3z + 2.

Proposition 2.3. Let z0 and z = z0 +h be two points. The function Dn (z)
is holomorphic on C and for any non-negative integer n, we have

D′n (z) = nDn−1 (z) ,

Dn (z) =
n∑

k=0

(
n

k

)
Dn−k (z0) (z − z0)k .

If z0 = 0, we obtain

Dn (z) =

n∑

k=0

(
n

k

)
Dn−kzk,

where D′n (z) is the derivative of Dn (z) .
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DAWN-SETS AND UP-SETS ON A TRELLIS STRUCTURE

SARRA BOUDAOUD AND LEMNAOUAR ZEDAM

Abstract. Down-sets and up-sets are two important families on any
ordered set, they play a central role in its representation theory [1, 2, 5].
Also, they contribute to the construction of the concepts of ideal and its
dual (a filter). In this talk, we introduce some families of sets associated
with any finite set on a trellis structure (it is a structure like lattice
(L,≤,∧,∨) without the property of associativity of the operations ∧
and ∨, which means also the elimination of the property of transitivity
of the order relation ≤) [3, 4]). Further, we extend the notions of down-
sets and up-sets to a trellis structure and discuss their various properties.
We pay particular attention to the properties that remain valid and to
those that are fails in absence of the (associativity) transitivity property.

Keywords and phrases. Down-set, Up-set, Pseudo ordered set, Trel-
lis.

1. Define the problem
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FEUILLETAGES DU PLAN PROJECTIF COMPLEXE À ORBITES DE DIMENSION
MINIMALE 6

par

Samir BEDROUNI & David MARÍN

Résumé. — L’ensemble F(d) des feuilletages de degré d du plan projectif complexe s’identifie à un ouvert de
ZARISKI dans un espace projectif de dimension d2+4d+2 sur lequel agit le groupe Aut(P2

C). Dans cet exposé, nous
présentons les grandes lignes de la démonstration d’un résultat de classification des feuilletages de F(d) à orbites
de dimension minimale 6. Plus précisément, nous montrons qu’il y a exactement deux orbites O(F d

1 ) et O(F d
2 ) de

dimension 6, nécessairement fermées dans F(d), ce qui généralise des résultats connus en degrés 2 et 3. Il s’agit
de l’un des principaux résultats d’un article récent intitulé « Géométrie de certains feuilletages du plan projectif
complexe », cf. arXiv:2101.11509.
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FUZZY IDEALS AND FILTERS ON A TRELLIS

SOHEYB MILLES AND LEMNAOUAR ZEDAM

Abstract. The purpose of this work is to investigate fuzzy ideal and
fuzzy filter concepts on a trellis and their fundamental properties. We
present interesting characterizations of these notions in terms of trellis
operations and in terms of their specific subsets. Moreover, we introduce
two interesting kinds, prime fuzzy ideals and prime fuzzy filters with
respect the weakly associative meet and join operations of this trellis
and investigate their various characterizations and properties.

2010 Mathematics Subject Classification. 03B52, 03G10, 06B10.

Keywords and phrases. Fuzzy set, Ideal, Filter, Trellis.
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GENERALIZED MULTIPLICATIVE (α;β)-DERIVATIONS

ON PRIME RINGS

MOHAMMADI EL HAMDAOUI AND ABDELKARIM BOUA

Abstract. Let R be an associative ring, U a non zero ideal of
R, P a prime ideal of R and G : R→ R is a multiplicative gener-
alized (α, β)-derivation of R. In the present paper, we obtain
description of the structure of R and information about the
generalized (α, β)-derivation G which satisfies the following
differential identities:
(i) [G(x), G(y)] = [x, y], for all x, y ∈ U ;
(ii) G(x) ◦G(y) = x ◦ y, for all x, y ∈ U
(iii) [G(x), G(y)]− [x, y] ∈ P , for all x, y ∈ R;
(iv) G(x) ◦G(y)− x ◦ y ∈ P , for all x, y ∈ R
(v) [G1(x), G2(y)] ∈ P , for all x, y ∈ R;
(vi) G1(x) ◦G2(y) ∈ P , for all x, y ∈ R;
(vii) [G1(x), y] + [x,G2(y)], for all x, y ∈ R;
(viii) G1(x) ◦ y + x ◦G2(y), for all x, y ∈ R;
Finally, an example is given to demonstrate that the restric-
tions imposed on the hypothesis of our result are not super-
fluous.

Generalized multiplicative (α;β)-derivations; SCP map; prime
ring.
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GENERATING FUNCTIONS AND THEIR APPLICATIONS

ALI BOUSSAYOUD

Abstract. In this paper, we give some new generating functions of the
products of Gaussian (p; q)-Fibonacci numbers, Gaussian (p; q)-Lucas
numbers, Gaussian (p; q)-Pell numbers, Gaussian (p; q)-Pell Lucas num-
bers and (p; q)-modi�ed Pell numbers with 2-orthogonal Chebyshev poly-
nomials of the �rst kind and trivariate Fibonacci polynomials.
2010 Mathematics Subject Classification. 05E05; 11B39..
Keywords and phrases. Generating function, Gaussian (p; q)-Fibonacci
numbers, Trivariate Fibonacci polynomials, Chebyshev polynomials.

1. Define the problem

Generating function were �rst introduced by Abraham de Moivre in 1730,
in order to solve the general linear recurrence problem (see [5] Section
1.2.9, Generating Functions). One can generalize to formal power series
in more than one indeterminate, to encode information about in�nite multi-
dimensional arrays of numbers.
This concept can be applied to solve many problems in mathematics.

there is a huge chunk of mathematics concerning generating functions. It can
be used to solve various kinds of counting problems easily, solve recurrence
relations by translating the relation in terms of sequence to a problem about
functions, prove combinatorial identities.
In simple words, generating functions can be used to translate problems

about sequences to problems about functions which are comparatively easy
to solve using maneuvers. (For more details, we can see [7, 4, 16]).
Given a sequence (an)n�0 of numbers (which can be integers, real numbers

or even complex numbers) we try to describe the sequence in as simple a
form as possible. Where possible, the best way is usually to express an as
a function of n. Unfortunately, not all sequences can be described directly
by such a formula, and in cases where they can, it is not always easy to
�nd the formula. Therefore, in many cases we describe our sequence by a
recurrence. Another way we could describe the sequence is to view the an

as the coe¢ cients of a formal power series F (x) :=
1P
n=0

anx
n; F (x) is called

the generating function of the sequence an.
Note that, we can de�ne the exponential (or Hurwitz) generating function

of an by

E(x) :=
1X
n=0

an
xn

n!
:

More generally, let 
 = (!0; !1; :::) be a sequence of nonzero real numbers.
Then, following Comtet (see [9] p. 137), we de�ne the !-generating function

1
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2 ALI BOUSSAYOUD

of the sequence an by


(x) :=
1X
n=0

anx
n!n:

Thus F (x) and E(x) are the special cases where !n = 1 and !n = 1=n!
respectively.
The literature on these topics is extremely vast. See further examples in

[1, 3, 2, 15].
In this paper, we give the generating functions for the products of each

following numbers sequences [10, 11]:
- Gaussian (p; q)-Fibonacci numbers fGFp;q;ngn�0, de�ned recursively by,�

GFp;q;0 = i; GFp;q;1 = 1;
GFp;q;n = pGFp;q;n�1 + qGFp;q;n�2; n � 2:

- Gaussian (p; q)-Lucas numbers fGLp;q;ngn�0, de�ned by the recurrence
relation, �

GLp;q;0 = 2� ip; GLp;q;1 = p+ 2iq;
GLp;q;n = pGLp;q;n�1 + qGLp;q;n�2; n � 2:

- Gaussian (p; q)-Pell numbers fGPp;q;ngn�0, de�ned by,�
GPp;q;0 = i; GPp;q;1 = 1;
GPp;q;n = 2pGPp;q;n�1 + qGPp;q;n�2; n � 2:

- Gaussian (p; q)-Pell Lucas numbers fGQp;q;ngn�0 de�ned as follows,�
GQp;q;0 = 2� 2ip; GQp;q;1 = 2p+ 2iq;
GQp;q;n = 2pGQp;q;n�1 + qGQp;q;n�2; n � 2:

And
- (p; q)-modi�ed Pell numbers fMPp;q;ngn�0, given by,�

MPp;q;0 = 1; MPp;q;1 = p;
MPp;q;n = 2pMPp;q;n�1 + qMPp;q;n�2; n � 2:

with the following polynomials sequences:
- the 2-orthogonal monic Chebyshev polynomials of the �rst kind (MPS)

f bTn (x)gn�0, studied in [8], and de�ned by the following relation where �
and  are constants,� bT0(x) = 1; bT1(x) = x; bT2(x) = x2 � �;bTn+3(x) = xbTn+2(x)� � bTn+1(x)�  bTn(x); n � 0;  6= 0:
and
- the trivariate Fibonacci polynomials, introduced by E.G. Kocer and H.

Gedikce in [6], and de�ned by the next relation,�
H0 (x; y; t) = 0; H1 (x; y; t) = 1; H2 (x; y; t) = x;
Hn (x; y; t) = xHn�1 (x; y; t) + yHn�2 (x; y; t) + tHn�3 (x; y; t) ; n � 3:
The technique applied here is based on the so-called symmetric functions.
The further contents of this paper are as follows. Section ?? gives some

preliminaries that we will need in the sequel. More precisely, we present
and prove our main result which relates the symmetric function with the
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GENERATING FUNCTIONS AND THEIR APPLICATIONS 3

symmetrizing operator �2�le1e2 . In section ??, we give some new generat-
ing functions related to another Gaussian (p; q) numbers and 2-orthogonal
Chebyshev polynomials. Section ?? is devoted to give some generating func-
tions of the products of Gaussian (p; q) numbers with the trivariate Fibonacci
polynomials.
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GENERATING FUNCTIONS OF PRODUCTS
k-BALANCING NUMBERS, k-LUCAS BALANCING

NUMBERS AND THE CHEBYSHEV

YAKOUBI FATMA AND ALI BOUSSAYOUD

Abstract. In this paper, we calculate the generating functions by us-
ing the concepts of symmetric functions. Although the methods cited
in previous works are in principle constructive, we are concerned here
only with the question of manipulating combinatorial objects, known
as symmetric operators. The proposed generalized symmetric functions
can be used to �nd explicit formulas....

2010 Mathematics Subject Classification. 05E05, 11b39.

Keywords and phrases. k-Balancing numbers; k-Lucas-balancing
numbers; Generating functions; Chebyshev polynomials.

1. Define the problem

In this contribution, we shall de�ne a useful operator denoted by �ka1a2
for which we can formulate, extend and prove new results based on our
previous ones([2; 3; 4]). In order to determine a new class of generating
functions of binary products of some special numbers and polynomials, we
combine between our indicated past techniques and these presented polishing
approaches.
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GROUPS WHOSE PROPER SUBGROUPS OF INFINITE RANK
ARE FINITE-BY-HYPERCENTRAL

AMEL DILMI

Abstract. It is proved that if G is an X-group of infinite rank whose proper
subgroups of infinite rank are finite-by-hypercentral groups, then so are all
proper subgroups of G, where X is the closure of the class of periodic locally
graded groups by the closure operations Ṕ , P̀ , R and L.

This is a joint work with Nadir Trabelsi.
A group G is said to be of finite rank r if every finitely generated subgroup of

G can be generated by at most r elements, and r is the least positive integer with
a such property. If there is no a such r, then the group G is said to be of infinite
rank. In recent years, many authors studied the structure of locally (soluble-by-
finite) groups G of infinite rank in which every proper subgroup of infinite rank
belongs to a given class Y and they proved that all proper subgroups of G belong
to Y, sometimes the group G itself belongs to Y (see for instance, [2] and [3]). In
particular, it is proved in [3, Theorem B’], that an X-group of infinite rank whose
proper subgroups of infinite rank are locally nilpotent is itself locally nilpotent,
where X is the class introduced in [1] as the class obtained by taking the closure of
the class of periodic locally graded groups by the closure operations Ṕ , P̀ , R and
L. Clearly X is a subclass of the class of locally graded groups that contains all
locally (soluble-by-finite) groups. Recall that a group is said to be locally graded
if every non-trivial finitely generated subgroup contains a proper subgroup of finite
index. In [1], it is proved that an X-group of finite rank is almost locally soluble.
Using [3, Theorem B’] and the fact that locally nilpotent groups of finite rank are
hypercentral, one can see that an X-group of infinite rank whose proper subgroups
of infinite rank are hypercentral has all its proper subgroups hypercentral. In the
present work, we consider this problem for the class of finite-by-hypercentral groups
and we prove the following result.

Theorem 1. Let G be an X-group of infinite rank. If all proper subgroups of infinite
rank of G are finite-by-hypercentral, then so are all proper subgroups of G.
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GROUPS WITH RESTRICTIONS ON SOME SUBGROUPS
GENERATED BY TWO CONJUGATES

FARES GHERBI AND NADIR TRABELSI

Abstract. Given a class of groups X, define F̄X to be the class of
groups G such that for every x ∈ G, there exists a normal subgroup
H(x) of finite index in G such that

〈
x, xh

〉
∈ X for every h ∈ H(x).

Let P be the class of polycyclic groups, C be the class of coherent
groups and let MU be the class of supersoluble extensions of groups
satisfying the minimal condition on normal subgroups. In this paper,
we prove that if G is a finitely generated soluble group in the class F̄P
(respectively, F̄C, F̄(MU)), then it is polycyclic (respectively, coherent,
finite-by-supersoluble).

2010 Mathematics Subject Classification. 20F16, 20F99.

Keywords and phrases. polycyclic groups, coherent groups, supersol-
uble groups, minimal condition on normal subgroups, finitely generated
soluble groups.

1. Define the problem

Let X be a class of groups; denote by FX the class of groups G such
that for every x ∈ G, there exists a normal subgroup of finite index H(x)
such that 〈x, h〉 ∈ X for all h ∈ H(x). The class FX was introduced in
[1] and it was investigated for X being the class Nk of nilpotent groups of
class at most the integer k ≥ 0. Note that the class FN1 coincides with
the class of FC-groups. The class FX was also studied in [2], where X
is respectively the class NF, FN and TN of nilpotent-by-finite, finite-by-
nilpotent and periodic-by-nilpotent groups respectively. In this paper, we
will consider a weaker version of the class FX for a couple of classes X which
are related to the class P of polycyclic groups. More precisely, denote by
F̄X the class of groups G such that for every x ∈ G, there exists a normal
subgroup of finite index H(x) such that

〈
x, xh

〉
∈ X for all h ∈ H(x). Note

that if X is a subgroup closed class, then we have that X ⊆ FX ⊆ F̄X.
The considération of the group U(3,Z), of all 3 × 3 unitriangular matrices
over Z, which is torsion-free and nilpotent of class 2, shows that FN1 (
F̄N1; so that, in general, FX is stictly smaller than F̄X. We will consider
the class F̄X where X is respectively the class P, C and MU of polycyclic
groups, coherent groups and supersoluble extensions of groups satisfying the
minimal condition on normal subgroups. Recall that a group G is said to
be coherent (respectively, supersoluble) if every finitely generated subgroup
is finitely presented (respectively, if it has a finite normal series of cyclic
factors). More precisely, we have shown the following results :

Theorem 1.1. A finitely generated soluble group is in the class F̄P if, and
only if, it is polycyclic.

1
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Theorem 1.2. A finitely generated soluble group is in the class F̄C if, and
only if, it is coherent.

Theorem 1.3. A finitely generated soluble group is in the class F̄(MU) if,
and only if, it is finite-by-supersoluble.

Let Q = (Q,+) be the additive group of rational numbers. Since Q is
locally cyclic, it is in the classes F̄P and F̄(MU). But Q is neither polycyclic
nor finite-by-supersoluble, which shows that Theorem 1.1 and Theorem 1.3
are not true for all soluble groups.
In [3], Golod constructed an infinite 3-generated group G all of whose

2-generated subgroups are finite p-groups for the same prime p. So G is
in classes F̄P and F̄(MU); but G, as it is infinite, is neither polycyclic nor
finite-by-supersoluble. Therefore Theorem 1.1 and Theorem 1.3 are not true
for all finitely generated (residually finite) groups.
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HOMODERIVATIONS AND JORDAN RIGHT IDEALS IN

3-PRIME NEAR-RINGS

ABDELKARIM BOUA

Abstract. In the present paper, we study the commutativity of 3-
prime right near-rings admitting homoderivations, which satisfy certain
differential proprieties on a near-ring. Furthermore, examples are given
to demonstrate that our hypotheses cannot be omitted
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1. Define the problem

In this paper, N denotes a right near-ring with multiplicative center
Z(N ); and usually N will be 3-prime, i.e. if for x, y ∈ N , xN y = {0}
implies x = 0 or y = 0. A near-ring N is called zero-symmetric if x0 = 0
for all x ∈ N (recall that left distributivity yields 0x = 0). Recall that N is
called 2-torsion free if 2x = 0 implies x = 0 for all x ∈ N . For any pair of
elements x, y ∈ N , [x, y] = xy− yx and x ◦ y = xy+ yx will denote the well-
known Lie product and Jordan product respectively. According to [9], an
abelian near-ring N is a near-ring such that (N ,+) is abelian. An additive
mapping d : N → N is a derivation if d(xy) = xd(y)+d(x)y for all x, y ∈ N .
An additive subgroup J of N is said to be a Jordan left (respectively right)
ideal of N if n◦j ∈ J (respectively j ◦n ∈ J ) for all j ∈ J , n ∈ N and J is
said to be a Jordan ideal of N if j◦n ∈ J and n◦j ∈ J for all j ∈ J , n ∈ N .

From the literature, a number of authors have studied commutativity the-
orems for prime or semiprime rings, ∗-prime rings and near-rings admitting
derivation, generalized derivation, semiderivation, generalized semideriva-
tion or two sided α-derivation satisfying the conditions: d(N ) ⊆ Z(N ),
d([x, y]) = 0, d([x, y]) = [x, y], d([x, y]) = x◦y, d(x◦y) = 0, d(x◦y) = x◦y
for all x, y ∈ N , for more details see the references [2], [3], [4], [5], [6], [7],
[8], [11], [12], for example.

In [13] El Sofy (2000) defined a homoderivation on a ring R to be an addi-
tive mapping h fromR into itself such that h(xy) = h(x)h(y)+h(x)y+xh(y)
for all x, y ∈ R. An example of such a mapping is to let h(x) = f(x) − x
for all x ∈ R where f is an endomorphism on R. It is clear that a homod-
erivation h is also a derivation if h(x)h(y) = 0 for all x, y ∈ R. In this case,
h(x)Rh(y) = {0} for all x, y ∈ R. So, if R is a prime ring, then the only
additive mapping which is both a derivation and a homoderivation is the

1

400



2 ABDELKARIM BOUA

zero mapping.

In [13] El Sofy (2000) also proved the commutativity of prime rings ad-
mitting a homoderivation h that satisfies the condition h([x, y]) = ±[x, y]
for all x, y ∈ I, where I is a two sided ideal of R. Following this line of
investigation, several authors studied homoderivations acting on appropri-
ate subsets of the prime ring and ∗-prime rings. In [10] Asmaa Melaibari
et al. studied the commutativity of rings admitting a homoderivation h
such that h([x, y]) = 0 for all x, y ∈ U , where U is a nonzero ideal of R.
In [1] A. Al-Kenani et al. proved the commutativity of ∗-prime rings ad-
mitting homoderivations which commute with ∗ and satisfy the conditions:
h([x, y]) = 0, h(x ◦ y) = 0, h([x, y]) = [x, y] and h(x ◦ y) = x ◦ y for all
x, y ∈ I, where I is a nonzero ∗-ideal of R.

In this line of investigation, it is natural to ask if these results are still
true if we replace prime rings and ∗-prime rings by 3-prime near-rings? In
this direction, it is more interesting to study these type of identities by
replacing the ring with a near-ring. The goal of the present paper is to
study the structure of near-rings and also Jordan right ideals equipped with
a new concept in near-rings called ”homoderivations” which satisfying some
algebraic conditions. In fact, our results generalize some results obtained
in [13], [10] and [1]. Some new related results have also been obtained.
Motivated by the concepts of Homoderivations on rings, here we initiate the
concepts of Homoderivations on near-rings as follows:

Definition 1.1. Let N be a near-ring. An additive mapping h : N → N is
a homoderivation if h(xy) = h(x)h(y) + h(x)y + xh(y) for all x, y ∈ N .

Note that the following example justifies the existence of homoderivations
on a near-ring which not derivations.

Example 1.2. Let N = (Z/2Z,+, .) such that ” + ” is the usual addition
and ”.” the multiplicative law defined by a.b = a for all a, b ∈ Z/2Z. Clearly
N is a right near-ring which is not a ring and h = idN is a homoderivation
on N . But not is a derivation on N .
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HARMONIC MAPS AND TORSE-FORMING VECTOR

FIELDS

AHMED MOHAMMED CHERIF AND MUSTAPHA DJAA

Abstract. In this paper, we prove that any harmonic map from a
compact orientable Riemannian manifold without boundary (or from
complete Riemannian manifold) (M, g) to Riemannian manifold (N,h)
is necessarily constant, with (N,h) admitting a torse-forming vector field
satisfying some condition.
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1. Define the problem

Let (M, g) and (N,h) be two Riemannian manifolds, the energy functional
of a map ϕ ∈ C∞(M,N) is defined by

(1) E(ϕ) =

∫

M
e(ϕ)vg,

where e(ϕ) = 1
2 |dϕ|2 is the energy density of ϕ, |dϕ| is the Hilbert-Schmidt

norm of the differential dϕ and vg is the volume element on (M, g). A map
ϕ ∈ C∞(M,N) is called harmonic if it is a critical point of the energy func-
tional, that is, if it is a solution of the Euler Lagrange equation associated
to (1)

(2) τ(ϕ) = trace∇dϕ = ∇ϕeidϕ(ei)− dϕ(∇Mei ei) = 0,

where {ei} is an orthonormal frame on (M, g), ∇M is the Levi-Civita con-
nection of (M, g), and ∇ϕ denote the pull-back connection on ϕ−1TN . Har-
monic maps are solutions of a second order nonlinear elliptic system and they
play a very important rôle in many branches of mathematics and physics
where they may serve as a model for liquid crystal. One can refer to [6]-[8]
for background on harmonic maps.
We shall consider a torse-forming vector field ξ, that is, a vector field which
is always torse-forming along any curve traced in a Riemennian manifold
(M, g) (see [11]-[14]). In this case, we have

(3) ∇MX ξ = fX + ω(X)ξ, ∀X ∈ Γ(TM),

for some smooth function f and 1-form ω on M , where∇M denotes the Levi-
Civita connection of (M, g). The 1-form ω is called the generating form and
the function f is called the conformal scalar. A torse-forming vector field
ξ is called proper torse-forming if the 1-form ω is nowhere zero on a dense
open subset of M . A torqued vector field is a torse-forming vector field ξ
satisfying (3) with ω(ξ) = 0 (see [3],[4]). In the case that ω is identically

1
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zero, ξ is called a concircular vector field. In particular, if ω = 0 and f = 1,
then ξ is called a concurrent vector field. For the existence of torse-forming
vector field on Riemannian manifold see for example [5] and [9].
A special torse-forming vector field or briefly a STF-vector field on a Riemen-
nian manifold (M, g) is a torse-forming vector field ξ satisfying the equation

(3) with generating form ω = µξ[, for some smooth function µ on M , that
is

(4) ∇MX ξ = fX + µg(X, ξ)ξ, ∀X ∈ Γ(TM).

In the seminal work [10], where we proved that, if (M, g) is a compact
Riemannian manifold without boundary, (N,h) is a Riemannian manifold,
ϕ : (M, g) → (N,h) a harmonic map, assume that there is a proper homo-
thetic vector field ξ on (N,h), that is Lξh = 2kh, for some constant k ∈ R∗,
where Lξh is the Lie derivative of the metric h with respect to ξ. Then ϕ
is a constant map. In the case of STF-vector field we obtain the following
result; Let (M, g) be a compact orientable Riemannian manifold without
boundary, and (N,h) be a Riemannian manifold admitting a STF-vector

field ξ with conformal scalar f and generating form µξ[. If f > 0 and µ ≥ 0
on N , then any harmonic map ϕ from (M, g) to (N,h) is constant.
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TWO RECURRENT METHODS TO CONSTRUCT

SEQUENCES OF IRREDUCIBLE POLYNOMIALS OVER F3s

AND F5t, RESPECTIVELY, OF DEGREE 4kn

SOUFYANE BOUGUEBRINE AND AHMED CHERCHEM

Abstract. In this paper, we consider the irreducibility of certain com-
posite polynomials over Fq, where q = pm and p is an odd prime. Then,
we give two recurrent methods to construct sequences of irreducible
polynomials over F3s and F5t , respectively, of degree 4kn (k = 1, 2, . . .).
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ducible polynomial.

1. Define the problem

Let Fq be a finite field of q elements, where q = pm and p is a prime.
Let f(x) be a polynomial over Fq of degree n ≥ 1. We say that f(x) is
irreducible over Fq if f(x) = Q(x)S(x) with Q(x), S(x) ∈ Fq[x] implies that
either Q(x) or S(x) is a constant polynomial.

Irreducible polynomials over finite fields are of great importance in both
mathematical theory and practical applications, such as coding theory, cryp-
tography, complexity theory, computer science and computational mathe-
matics (see e.g., [4],[7],[10],[11]). This paper is devoted to the construction
of irreducible polynomials of degree 4kn (k = 1, 2, . . .) over finite fields of
odd characteristics.

The following theorem is essential for us.

Theorem 1.1 (Cohen [3]). Let g(x), h(x) ∈ Fq[x] be relatively prime poly-
nomials. Let f(x) be an irreducible polynomial over Fq of degree n. Then
the composition

h(x)nf(
g(x)

h(x)
)

is irreducible over Fq if and only if g(x)− αh(x) is irreducible over Fqn for
any root α ∈ Fqn of f(x).

Remark. Many authors used Cohen’s theorem in order to construct
irreducible polynomials over Fq from a given irreducible polynomials over
Fq(see e.g., [1],[5],[6],[8],[9]). The main idea is to make the polynomial g(x)−
αh(x) to be a known polynomial, say a binomial or trinomial.

The following theorem is the base of our results.

Theorem 1.2 (Dickson [2]). Let q = pm where p is an odd prime. Let
f(x) = x4 + ax3 + bx2 + cx+ d ∈ Fq[x], where c = 1

2ab− 1
8a

3. Then, f(x) is

irreducible over Fq if and only if (12b − 1
8a

2)2 − d and 5
16a

4 − a2b + 16d are
non-square in Fq.
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Using Dickson’s theorem, a construction by composition of irreducible
polynomials over Fq of the form P (g(x)), where P (x) is irreducible over Fq
of degree n and g(x) ∈ Fq[x] is a polynomial of degree 4 has been established
in [8]. We will use a similar method to give a construction of irreducible
polynomials by composition of the form h(x)nP (g(x)/h(x)), where h(x) ∈
Fq[x] is a polynomial of degree 4, that we did not find in any literature.
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ISODUAL QUASI-CYCLIC CODES OVER FINITE FIELDS

BENAHMED FATMA ZOHRA, GUENDA KENZA, BATOUL AICHA,
AND T.AARON GULLIVER

Abstract. An isodual code is a linear code which is equivalent to its
dual, and a self-dual code is a code which is equal to its dual. The class
of isodual codes is important because it contains the self-dual codes as a
subclass. In addition, isodual codes are contained in the larger class of
formally self-dual codes, and they are of interest due to their relationship
to isodual lattice constructions . Motivated by the numerous practical
applications of code equivalency in code-based cryptography, we prove
that two quasi-cyclic codes are permutation equivalent if and only if
their constituent codes are equivalent. This gives conditions on the
existence of isodual quasi-cyclic codes. These conditions are used to
obtain isodual quasi- cyclic codes. Further, we provide a construction
of isodual quasi-cyclic codes as the matrix product of isodual codes

Mathematics Subject Classication 94B05, 94B15, 94B60.

Keywords
Cyclic codes, Quasi-cyclic codes, Equivalence, Permutation group,

Isod- ual codes, Self-dual codes.

1. we prove that two quasi-cyclic codes are permutation
equivalent if and only if their constituent codes are
equivalent. This gives conditions on the existence of

isodual quasi-cyclic codes.
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KÄHLERIAN STRUCTURE ON THE PRODUCT OF TWO

TRANS-SASAKIAN MANIFOLDS

HABIB BOUZIR AND GHERICI BELDJILALI

Abstract. It’s shown that for some changes of metrics and structural
tensors, the product of two trans-Sasakian manifolds is a Kählerian
manifold. This gives new positive answer and more generally to Blair-
Oubiña’s open question. (See [1]). Concrete examples are given.

Mathematics Subject Classification (2010): 53C15 ; 53C40.

Keywords and phrases: Trans-Sasakian manifolds; Kählerian mani-
folds; product manifolds.

1. Define the problem

On the product of two almost contact manifolds, A. Morimoto [2] defined
a natural almost complex structure (see (4.2) in this paper) and proved that
this almost complex structure is integrable if and only if the two factors are
normal almost contact manifolds. Later, M. Capursi [3] investigated almost
Hermitian geometry of the product of two almost contact metric manifolds
with the product metric, with respect to the almost complex structure de-
fined by Morimoto. He shows that this product is Hermitian, Kählerian,
almost Kählerian or nearly Kählerian, if and only if, the two factors are nor-
mal, cosymplectic, almost cosymplectic or nearly cosymplectic respectively.

Extending ideas from Capursi and Morimoto, Blair and Oubiña [1] con-
sidered conformal and related changes of the product metric with respect to
a family of almost complex structures (see relation (3.1)) containing the one
of Morimoto. Under the Kähler condition on the product manifold, Blair
and Oubina proved that if one factor is Sasakian, the other is not, but that
locally the second factor is of the type studied by Kenmotsu. The resuls
are more general and given in terms of trans-Sasakian, α-Sasakian and β-
Kenmotsu structures, finally they asked the open question: What kind of
change of the product metric will make both factors Sasakian?

In [4], Watanabe survey almost Hermitian, Kähler, almost quaternionic
Hermitian and quaternionic Kähler structures, naturally constructed on
products of manifolds with almost contact metric and Sasakian structures
and open intervals, as an application of these constructions. Next, he in-
vestigated almost Hermitian structures, naturally defined on the product
manifolds of two almost contact metric and Sasakian manifolds, and asked
some problems related to these topics.

In the same direction, Özdemir and al. [5], gave some properties that
each factor should satisfy to make the almost Hermitian structure on the
product manifold in a certain class of almost Hermitian manifolds.

1
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Recently, in [6], we introduced the notion of generalized doubly D-homothetic
bi-warping. we gave an application to some questions of the characteriza-
tion of certain geometric structures. Our work has supported the point of
view of the Calabi-Eckmann manifolds that the almost Hermitian structures
defined on the product of two Sasakian manifolds are never Kählerian.

Here, again we based on the open question of Blair-Oubiña (see [1],[4]),
but with a new techniques which requires a change in the two directions,
metrics and structural tensors of the two Trans-Sasakian manifolds, which
gave a positive response to the question.

This paper is organized in the following way:
Section 2, is devoted to the background of the structures which will be
used in the sequel. In Section 3, we introduce a new deformation of almost
contact metric structure and we give some geometric properties. Section 3 is
devoted to the construction of a class of interesting examples in dimension 3.
In the last section, we focus on our main goal where we construct Kählerian
manifold using the product of two Trans-Sasakian manifolds with a concrete
example.
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MORE ON FUZZY TOPOLOGIES GERERATED BY FUZZY
RELATIONS

KHEIR SAADAOUI

Abstract. We study fundamental properties of the notion of fuzzy
topology generated by fuzzy relation given by Mishra and Srivastava.
Some necessary examples are given. Moreover, we teat the lattice struc-
ture of a family of fuzzy topologies generated by fuzzy relations and we
study necessary structural characteristics of this lattice.
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NOTE ON A THEOREM OF ZEHNXIAG ZHANG

I. LAIB, A. DERBAL, R. MECHIK, AND N. REZZOUG

Abstract. A sequence of strictly positive integers is said to be primi-
tive if none of its terms devide the others. In this paper, we give a new
proof of a result, conjectured by P. Erdős and Z. Zhang in 1993 [3], on a
primitive sequence whose the number of the prime factors of the termes
counted with multiplicity is at most 4. The objective of this proof is to
improve the complexity, which helps to prove this conjecture.

2010 Mathematics Subject Classification. Primary 11Bxx.

Keywords and phrases. Primitive Sequence, Prime Number, Erdős
Conjecture.

1. Define the problem

Attempt to prove the conjecture d’Erdős over primitive sequences on the
sum

∑
1/(a log a).
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[2] P. Erdős, Note on sequences of integers no one of which is divisible by any other,
J.Lond. Math. Soc,10 , p. 126-128,(1935)
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Naturally Harmonic Maps Between Tangent Bundles

El hendi Hichem
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Mots-clés : Horizontal lift; vertical lift; Natural metrics; tangent map; harmonic map

Abstract

In this paper, we investigate the harmonicity of a tangent map φ : (TM, g̃) −→ (TN, h̃), in the
case where the tangent bundles TM,TN are endowed with a natural Riemannian metrics g̃, h̃. In
this work we generalise previous results connecting to article A. Sanini (see [12]) .
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NEW LDPC CODES

BENNENNI NABIL

Abstract. In this article we have defined a new family of LDPC code
over finite chain ringR of four elements, we have modified several meth-
ods of the construction. Using the Gray application we obtained quasi-
cyclic LDPC codes of the index 2 and we generalized this result in the
finite chain rings of n elements such that we obtained quasi-cyclic codes
of the index n.

94b15,06f25,94b75

Cyclic codes over ring, new LDPC codes, several methods of
the construction LDPC codes.

1. Define the problem

The first systematic and algebraic construction of LDPC codes based on fi-
nite geometries was proposed by Kou, Lin and Fossorier in the 2000s [10], [11],
[12], [6], [13]. The LDPC class of finite geometry has a good minimum dis-
tance and the Tanner graphs do not have short cycles. Their structure is
cyclic or quasi-cyclic, so that their encoding is simple and can be realized
with linear shift registers. With this type of codes of great length, we obtain
a very good error performance. The construction and decoding of LDPC
codes can be done in several ways. An LDPC code is characterized by its
parity matrix.
In this article we have defined a new family of LDPC code over finite chain
ringR of four elements, we have modified several methods of the construc-
tion. Using the Gray application we obtained quasi-cyclic LDPC codes of
the index 2 and we generalized this result in the finite rings of n elements
such that we obtained quasi-cyclic codes of the index n.
this paper is organized as follows. In section 2 we present some preliminaries
of finite chain ring R and the cyclic code in this ring. In section 3 we defined
a new family of non binary LDPC code, such that we have using the Gary
map, we have obtained the binary regular code LDPC code. In section 4 we
give several method for construction of LDPC code over finite chain ring R.
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On The Normality Of Toeplitz Matrices

Tahar Mezeddek Mohamed∗
Krim Ismaiel†

and
Smail Abderrahmane‡

Abstract

In this paper, we study the normal structure of powers of normal Toeplitz
matrices in the finite state. Every finite complex normal Toeplitz matrix T is
one of following structures:
(Type I) : a rotation and a translation of a Hermitian Toeplitz matrix (Type
I), that is T = αI + βH, where α and β are complex numbers, and H is a
Hermitian Toeplitz; or
(Type II ) : is a generalised circulant which means a Toeplitz matrix of the form

T =




a0 aNe
iθ

. . . a1e
iθ

a1 a0
. . .

. . .
. . .

. . .
. . . aNe

iθ

aN
. . . a1 a0




for some fixed real θ.
Our work consists in studying Tn n ∈ N and seeing whether it remains of the
same type as T , be it (I) or (II).

Keywords : Normal Toeplitz martix, Hermetian matrix, Circulant matrix, Power.
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On Translation Surfaces with Zero Gaussian Curvature
in Sol3 Space
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Abstract

In this work we classified translation invariant surfaces with zero Gaussian curvature
in the 3−dimensional Sol group .

Key words and phrases: Flat Surfaces, Homogeneous Space.
Mathematics Subject Classifications (2010): 49Q20. 53C22.

1 Introduction and Preliminaries

During the recent years, there has been a rapidly growing interest in the geometry of surfaces
in the homogeneous space Sol3 focusing on minimal and constant mean curvature and totally
umbilic surfaces. This was initiated by R.Souam and E.Toubiana [18, 19], and by R.Lopez
and M.I.Munteanu [8, 9] . More general many works are devoted to studying the geometry
of surfaces in 3-homogeneous space Sol3. See for example [10],[7],[12],[4],[13].
The Sol3 geometry is eight models geometry of Thurston, see [21] .It is a Lie group en-
dowed with a left-invariant metric, it is a homogeneous simply connected 3−manifold with a
3−dimensional isometry group, see [2].It is isometric to R3 equipped with the metric

ds2 = e2zdx2 + e−2zdy2 + dz2.

where (x, y, z) the usual coordinates of R3.
The group structure of Sol3 is given by

(x′, y′, z′) ? (x, y, z) = (e−z
′
x+ x′, ez

′
y + y′, z + z′).

The isometries are
(x, y, z) 7→ (±e−cx+ a,±ecy + b, z + c)

and
(x, y, z) 7→ (±e−cy + a,±ecx+ b,−z + c).

where a, b end c are any real numbers.
A left-invariant orthonormal frame {E1, E2, E3} in Sol3 is given by

E1 = e−z
∂

∂x
, E2 = ez

∂

∂y
, E3 =

∂

∂z
.
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2 L. Belarbi

The Levi-Civita connexion ∇̃ of Sol3 with respect to this frame is

∇̃E1E1 = −E3, ∇̃E1E2 = 0, ∇̃E1E3 = E1,

∇̃E2E1 = 0, ∇̃E2E2 = E3, ∇̃E2E3 = −E2 (1.1)

∇̃E3E1 = 0, ∇̃E3E2 = 0, ∇̃E3E3 = 0.

2 Flat Translation Surfaces in Sol3

2.1

In this section we classified complete flat translation surfaces (Σ) in Sol3 which are invariant
under the one parameter group of isometries (x, y, z) 7→ (x, y + c, z).Clearly,such a surface is
generated by a curve γ in the totally geodesic plane {y = 0}.Discarding the trivial case of a
vertical plane {x = x0}, we can assume that γ is locally is a graph over the x−axis.Thus γ is
given by γ(x) = (x, 0, z(x)). Therefore the generated surface is parameterized by

X(x, y) = (x, y, z(x)), (x, y) ∈ R2.

We have an orthogonal pair of vector fields on (Σ), namely,

e1 := Xx = (1, 0, z′) = ezE1 + z′E3.

and
e2 := Xy = (0, 1, 0) = e−zE2.

The coefficients of the first fundamental form are:

E =< e1, e1 >= z′2 + e2z, F =< e1, e2 >= 0, G =< e2, e >= e−2z.

As a unit normal field we can take

N =
−z′e−z√

1 + z′2e−2z
E1 +

1√
1 + z′2e−2z

E3

The covariant derivatives are

∇̃e1e1 = 2z′ezE1 + (z′′ − e2z)E3

∇̃e1e2 = −z′e−zE2

∇̃e2e2 = e−2zE3.

The coefficients of the second fundamental form are

l =< ∇̃e1e1, N >=
−2z′2 + z′′ − e2z√

1 + z′2e−2z

m =< ∇̃e1e2, N >= 0
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n =< ∇̃e2e2, N >=
e−2z√

1 + z′2e−2z
.

Let Kext be the extrinsic Gauss curvature of (Σ),

Kext =
ln−m2

EG− F 2
=
−2z′2e−2z + z′′e−2z − 1

(1 + z′2e−2z)2
. (2.1)

In order to obtain the intrinsic Gauss curvature Kint, recall that Kint = Kext + K(e1 ∧ e2),
where K(e1 ∧ e2) is the sectional curvature of each tangent plane spanned by e1 and e2, and

K(e1 ∧ e2) =
〈R(e1, e2)e2, e1〉

< e1, e1 >< e2, e2 > − < e1, e2 >2

where
R(e1, e2)e2 = ∇̃e1∇̃e2e2 − ∇̃e2∇̃e1e2 − ∇̃[e1,e2]e2

Now we easily compute
∇̃e1∇̃e2e2 = e−zE1 − 2z′e−2zE3

∇̃e2∇̃e1e2 = −z′e−2zE3

∇̃[e1,e2]e2 = 0.

Thus we have

K(e1 ∧ e2) =
1− z′2e−2z
1 + z′2e−2z

.

Consequently, the intrinsic Gauss curvature is

Kint =
e−2z[z′′ − 2z′2 − z′4e−2z]

(1 + z′2e−2z)2
. (2.2)

So that (Σ) is a flat surface in Sol3 if and only if

Kint = 0,

that is, if and only if
z′′ − 2z′2 − z′4e−2z = 0 (2.3)

to classify flat surfaces must solve the equation (2.3)
We note that for z equal to a constant (z = z0) is a solution of the equation (2.3).
If z is not constant (z′ 6= 0),suppose that z′ = p, and

z′′ =
dp

dx
=
dp

dz

dz

dx
= p.p′(z)

equation (2.3) becomes
p.p′ = 2p2 + p4e−2z.

or
p−3.p′ = 2p−2 + e−2z. (2.4)
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4 L. Belarbi

and suppose that p−2 = h, equation (2.4) becomes

−1

2
h′ = 2h+ e−2z. (2.5)

homogeneous solutions of equation (2.5) is

h(z) = K.e−4z.

and general solutions of the equation (2.5) is

h(z) = e−4z(a− e2z),
where a ∈ R∗,+ and z ∈]−∞, ln(

√
a)[.Therefore

p(z) = ± 1√
h(z)

= ± e2z√
a− e2z

.

and we have

z′ = ± e2z√
a− e2z

.

or
dz

dx
= ± e2z√

a− e2z
so separating variables, we obtain

∫
dx =

∫
±
√
a− e2z
e2z

dz

i.e

x = ±
∫ √

a− e2z
e2z

dz + α,

where α ∈ R.
we substitute tanh(t) =

√
a−e2z√
a
, dz = − tanh(t)dt, and e2z = a

cosh2(t)
, therefore

∫ √
a− e2z
e2z

dz = −−1√
a

∫
sinh2(t)dt = − 1

8
√
a

[e2t − e−2t] +
t

2
√
a
,

and as t = arc tanh
(√

a−e2z√
a

)
= 1

2
ln

(
1+

√
a−e2z√

a

1−
√

a−e2z√
a

)
, thus

∫ √
a− e2z
e2z

dz =
1

2
√
a
arc tanh

(√
a− e2z√
a

)
− 1

8
√
a

[(√
a+
√
a− e2z√

a−
√
a− e2z

)
−
(√

a−
√
a− e2z√

a+
√
a− e2z

)]

and is calculated by the following
∫ √

a− e2z
e2z

dz =
1

2
√
a
arc tanh

(√
a− e2z√
a

)
−
√
a− e2z
2e2z

.

Therefore

x(z) = ±
(

1

2
√
a
arc tanh

(√
a− e2z√
a

)
−
√
a− e2z
2e2z

)
+ α.

As conclusion, we have
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Figure 1: Non extendable flat surface in Sol3 :x(z) =

±
(

1
2
√
0.2
arc tanh

(√
0.2−e2z√

0.2

)
−
√
0.2−e2z
2e2z

)
+ 2, a = 0.2, z = −6..− 1,, y = −4..8 .

Theorem 2.1. •The only non extendable flat translation surfaces in Sol3 which are invariant
under the one parameter group of isometries (x, y, z) 7→ (x, y + c, z), are the surfaces whose
parametrization is X(x, y) = (x, y, z(x)) where x and z satisfy

x = ±
(

1

2
√
a
arc tanh

(√
a− e2z√
a

)
−
√
a− e2z
2e2z

)
+ α.

where a ∈ R∗,+, α ∈ R and z ∈]−∞, ln(
√
a)[.

•In particular the only complete flat translation surfaces in Sol3 which are invariant under
the one parameter group of isometries (x, y, z) 7→ (x, y + c, z), are the planes z = z0.

Theorem 2.2. •The only complete extrinsically flat translation surfaces in Sol3 which are
invariant under the one parameter group of isometries (x, y, z) 7→ (x, y+c, z), are parametrized
by

X(x, y) =

(
x, y, ln

(
1√

−x2 + 2λx+ µ

))
,

where λ, µ ∈ R, and λ2 + 2µ > 0 α ∈ R and x ∈]λ−
√
λ2 + 2µ, λ+

√
λ2 + 2µ[.

Proof. We know that Σ is extrinsically surface if and only if Kext = 0, and we have Kext = 0
equivalent to

2z′2e−2z − z′′e−2z = −1.
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6 L. Belarbi

we remark that 2z′2e−2z − z′′e−2z = (−z′e−2z)′, thus

−z′e−2z = −x+ λ, (2.6)

where λ ∈ R,and we integrate the equation 2.6

z(x) = ln

(
1√

−x2 + 2λ+ 2µ

)
,

where µ ∈ R, and λ2 + 2µ > 0 α ∈ R and x ∈]λ−
√
λ2 + 2µ, λ+

√
λ2 + 2µ[.

2.2

In this section we classified complete flat translation surfaces (Σ) in Sol3 which are invariant
under the one parameter group of isometries (x, y, z) 7→ (x+ c, y, z).Clearly,such a surface is
generated by a curve β in the totally geodesic plane {x = 0}.Discarding the trivial case of a
vertical plane {y = y0}, we can assume that β is locally is a graph over the y−axis.Thus β is
given by β(y) = (0, y, z(y)). Therefore the generated surface is parameterized by

X(x, y) = (x, y, z(y)), (x, y) ∈ R2.

We have an orthogonal pair of vector fields on (Σ), namely,

e1 := Xx = (1, 0, 0) = ezE1.

and
e2 := Xy = (0, 1, z′) = e−zE2 + z′E3.

The coefficients of the first fundamental form are:

E =< e1, e1 >= e2z, F =< e1, e2 >= 0, G =< e2, e2 >= z′2 + e−2z.

As a unit normal field we can take

N =
−z′ez√

1 + z′2e2z
E2 +

1√
1 + z′2e2z

E3

The covariant derivatives are
∇̃e1e1 = −e2zE3,

∇̃e1e2 = z′ezE1,

∇̃e2e2 = −2z′e−zE2 + (z′′ + e−2z)E3.

The coefficients of the second fundamental form are

l =< ∇̃e1e1, N >=
−e2z√

1 + z′2e2z

m =< ∇̃e1e2, N >= 0
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n =< ∇̃e2e2, N >=
2z′2 + z′′ + e2z√

1 + z′2e2z
.

Let Kext be the extrinsic Gauss curvature of (Σ),

Kext =
ln−m2

EG− F 2
=
−2z′2e2z − z′′e2z − 1

(1 + z′2e2z)2
. (2.7)

In order to obtain the intrinsic Gauss curvature Kint, recall that Kint = Kext + K(e1 ∧ e2),
where K(e1 ∧ e2) is the sectional curvature of each tangent plane spanned by e1 and e2, and

K(e1 ∧ e2) = 〈R(e1,e2)e2,e1〉
<e1,e1><e2,e2>−<e1,e2>2

= R1212+z′2R1313

1+z′2e2z

= 1−z′2e2z
1+z′2e2z .

Consequently, the intrinsic Gauss curvature is

Kint =
e2z[z′′ + 2z′2 + z′4e2z]

(1 + z′2e2z)2
. (2.8)

So that (Σ) is a flat surface in Sol3 if and only if

Kint = 0,

that is, if and only if
z′′ + 2z′2 + z′4e2z = 0 (2.9)

to classify flat surfaces must solve the equation (2.9)
We note that for z equal to a constant (z = z0 ∈ R) is a solution of the equation (2.9).
If z is not constant (z′ 6= 0),suppose that z′ = q, and

z′′ =
dq

dx
=
dq

dz

dz

dx
= q.q′(z)

equation (2.9) becomes
q.q′ = −2q2 − q4e2z.

or
q−3.q′ = −2q−2 − e2z. (2.10)

and suppose that q−2 = g, equation (2.10) becomes

−1

2
g′ = −2g − e2z. (2.11)

homogeneous solutions of equation (2.11) is

g(z) = K.e4z.
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and general solutions of the equation (2.11) is

g(z) = e4z(a− e−2z),
where a ∈ R∗,+ and z ∈] ln(

√
a),+∞[. Therefore

q(z) = ± 1√
g(z)

= ± e−2z√
a− e−2z

.

and we have

z′ = ± e−2z√
a− e−2z

.

or
dz

dy
= ± e−2z√

a− e−2z
so separating variables, we obtain

∫
dy =

∫
±
√
a− e−2z
e−2z

dz

i.e

y =

∫
±
√
a− e−2z
e−2z

dz + δ,

where δ ∈ R.
we substitute tanh(t) =

√
a−e−2z√

a
, dz = tanh(t)dt, and e−2z = a

cosh2(t)
= a(1−tanh2(t), therefore

∫ √
a− e−2z
e−2z

dz = − 1√
a

∫
sinh2(t)dt =

1

8
√
a

[e2t − e−2t]− t

2
√
a
,

and as t = arc tanh
(√

a−e−2z√
a

)
= 1

2
ln

(
1+

√
a−e−2z√

a

1−
√

a−e−2z√
a

)
, thus

∫ √
a− e−2z
e−2z

dz = − 1

2
√
a
arc tanh

(√
a− e−2z√

a

)
+

1

8
√
a

[(√
a+
√
a− e−2z√

a−
√
a− e−2z

)
−
(√

a−
√
a− e−2z√

a+
√
a− e−2z

)]

and is calculated by the following
∫ √

a− e−2z
e−2z

dz = − 1

2
√
a
arc tanh

(√
a− e−2z√

a

)
+

√
a− e−2z
2e−2z

.

As conclusion, we have

Theorem 2.3. •The only non extendable flat translation surfaces in Sol3 which are invariant
under the one parameter group of isometries (x, y, z) 7→ (x + c, y, z), are the surfaces whose
parametrization is X(x, y) = (x, y, z(y)) where y and z satisfy

y = ±
(
− 1

2
√
a
arc tanh

(√
a− e−2z√

a

)
+

√
a− e−2z
2e−2z

)
+ δ,

where a ∈ R∗,+, δ ∈ R and z ∈] ln(
√
a),+∞[.

•In particular the only complete flat translation surfaces in Sol3 which are invariant under
the one parameter group of isometries (x, y, z) 7→ (x+ c, y, z), are the planes z = z0.
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Figure 2: Non extendable flat surface in Sol3 :y(z) =

±
(

1
2
√
0.2
arc tanh

(√
0.2−e−2z√

0.2

)
−
√
0.2−e−2z

2e−2z

)
+ 2, a = 0.2, z = −0.5..6,, x = −4..8 .

Theorem 2.4. •The only complete extrinsically flat translation surfaces in Sol3 which are
invariant under the one parameter group of isometries (x, y, z) 7→ (x+c, y, z), are parametrized
by

X(x, y) =
(
x, y, ln

(√
−x2 + 2λx+ µ

))
,

where λ, µ ∈ R, and λ2 + 2µ > 0 α ∈ R and x ∈]λ−
√
λ2 + 2µ, λ+

√
λ2 + 2µ[.

Proof. We know that Σ is extrinsically flat surface if and only if Kext = 0, and we have
Kext = 0 equivalent to

2z′2e2zz′′e2z = −1.

we remark that 2z′2e2z + z′′e2z = (z′e2z)′, thus

z′e2z = −x+ λ, (2.12)

where λ ∈ R,and we integrate the equation 2.12

z(x) = ln
(√
−x2 + 2λ+ 2µ

)
,

where µ ∈ R, and λ2 + 2µ > 0 α ∈ R and x ∈]λ−
√
λ2 + 2µ, λ+

√
λ2 + 2µ[.
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ON A TRANSLATED SUM OVER PRIMITIVE
SEQUENCES RELATED TO A CONJECTURE OF ERD½OS

NADIR REZZOUG, ILIAS LAIB, AND KENZA GUENDA

Abstract. A strictly increasing sequence A of positive integers is said
to be primitive if no term of A divides any other. Erd½os showed that
the series

P
a2A

1
a log a

for A di¤erent from 1. In this work we show that

for x large enough, there exists a primitive sequence A, such thatX
a2A

1

a(log a+ x)
�
X
p2P

1

p(log p+ x)
,

where P denotes the set of prime numbers.

2010 Mathematics Subject Classification. 11Bxx.

Keywords and phrases. Primitive sequences, Erd½os conjecture, Prime
numbers.

1. Define the problem

Find an Erdos conjecture proof that
P
a2A

1
a log a �

P
p2P

1
p log p , where A is a

primitive sequence and P is the set of prime numbers.
This problem was stated in 1988.
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ON LATTICE HOMOMORPHISMS IN RIESZ SPACES

ELMILOUD CHIL AND FATEH MEKDOUR

Abstract. In this paper, we study the connection between lattice and
Riesz homomorphisms in Riesz spaces. We propose generalized facts
of Mena and Roth, Thanh, Lochan and Strauss, and Ercan and Wick-
stead’s approaches (see [3, 6, 8, 11]) for Riesz spaces. To do so, we use
new techniques that deal with the prime ideal in Riesz space to prove
that any lattice homomorphism in Riesz space is a Riesz homomorphism.

2010 Mathematics Subject Classification. 06F25, 46A40.

Keywords and phrases. Riesz spaces, lattice and Riesz homomor-
phisms.

1. Define the problem

We begin first from the important historical background on this
monograph through the following:
◦ The relation of lattice homomorphisms with Riesz homomorphisms has

attracted the attention of many authors in last few decades. The first result
in this direction due to Menna and Roth, by their basic works in 1978. They
proved that if X and Y are compact Hausdorff spaces and T : C(X) −→
C(Y ) is a lattice homomorphism such that T (λ1) = λT (1) for all λ ∈ R,
then T is linear.
◦ Later, several authors are interested in this problem. Thanh was gener-

alized Mena and Roth’s result to the case when X and Y are real compact
spaces. For another generalization by Lochan and Strauss.
◦ So far, the best results in this field are duo to Ercan and Wickstead.

They showed from the theorem of Mana and Roth by using the Kakutani rep-
resentation theorem, that if E and F are uniformly complete Archimedean
Riesz spaces with weak order units eE ∈ E and eF ∈ F , and if T : E −→ F
is a lattice homomorphism such that T (λeE) = λeF for all λ ∈ R, then T is
linear.

The motivation for our work appears by the following main
ideas:
• Our study is concerned to give the connection between lattice and Riesz

homomorphisms in Riesz spaces. We prove under a certain condition that
any lattice homomorphism on Riesz space is a Riesz homomorphism.
• Our main goal is to prove that, in results of Ercan and Wickstead, that

assumption of the uniform completeness condition on the domain of mapping
is superfluous. Down to the general case of Riesz spaces, it seems natural
therefore to ask what happens in the general case of Riesz spaces? What
about the weaker condition under which a lattice homomorphism defined on
a Riesz space is linear?

1
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• As to establish immediate applications of the above result we present a
constructive manner for results are obtained more directly constructive.
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ON TERNARY EQUIVALENCE RELATIONS

HAMZA BOUGHAMBOUZ AND LEMNAOUAR ZEDAM

Abstract. In this talk, we introduce the notion of ternary equivalence
relations based on the properties of reflexivity, symmetry and transi-
tivity of ternary relations. Due to the various definition of the above
properties, we show the appropriate definitions and the undesirable def-
initions of ternary equivalence relation.

2010 Mathematics Subject Classification. 08A02

Keywords and phrases. Ternary Relation, Relational systems, Equiv-
alence Relations, Equivalence classes.

1. Define the problem

Since the second half of the last century the interest in ternary relations
is on the rise [1, 2, 5, 6], driven by the practical application [3, 8]. By
far, the most important type of binary relations is the binary equivalence
relations. Hence we aim to break through the notion of ternary equivalence
relations. which become possible since the recent introduction of the notions
of compositions of ternary relations [6], moreover certain compositions has
been proven to be associative, which gave rise to the notion of transitive
ternary relations[5]. We studied a ternary relation that is (in different senses)
reflexive, symmetric and transitive.
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ON THE a-POINTS OF THE k-TH DERIVATIVES OF THE

DIRICHLET L-FUNCTIONS

MOHAMMED MEKKAOUI, ABDALLAH DERBAL, AND KAMEL MAZHOUDA

Abstract. Let L(k)(s, χ) be the k-th derivative of the Dirichlet L-
function associated with a primitive character χ mod q and a be a
complex number. The solutions L(k)(s, χ) = a are called a-points. In
this talk, we present our results [3] for the sums

∑

ρ
(k)
0,χ:0<γ

(k)
0,χ<T

L(j)(ρ
(k)
0,χ, χ) and

∑

ρ
(k)
a,χ:1<γ

(k)
a,χ<T

L(j)(ρ(k)a,χ, χ) as T → ∞

where j and k are non-negative integers and ρ
(k)
a,χ denotes an a-point of

the k-th derivative L(k)(s, χ) and γ
(k)
a,χ = Im(ρ

(k)
a,χ). This work continues

the investigations of Kaptan, Karabulut & Yildirim [1, 2] and Mazhouda
& Onozuka [4].

2010 Mathematics Subject Classification. 11M06,11M26, 11M36.

Keywords and phrases. Dirichlet L-function, a-points, value-distribution.

References

[1] D. A. Kaptan, Y. Karabulut and C. Yildirim, Some Mean Value Theorems for the
Riemann Zeta-Function and Dirichlet L-Functions, Comment. Math. Univ. St. Pauli,
60, no. 1-2 (2011), 8387

[2] Y. Karabulut and Y. Yildirim, On some averages at the zeros of the derivatives of the
Riemann zeta-function, Journal of Number Theory 131 (2011), 19391961.

[3] M. Mekkaoui, A. Derbal and K. Mazhouda, On some sums at the a-points of
the k-th derivatives of the Dirichlet L-functions, Turkish Journal of Mathematics, 44
(2020), 1544-1560.

[4] K. Mazhouda and T. Onozuka, On some sums at the a-points of derivatives of the
Riemann zeta-function . To appear in AGNT Analysis, Geometry and Number Theory
(2021).
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Abstract 

Recently, we have introduced the notion of standard single valued neutrosophic metric 
space as a generalization of standard fuzzy metric space given by J.R. Kider and Z.A. Hussain, 
where some interesting properties have been investigated such as the continuity property of 
the mappings defined on standard single valued neutrosophic metric spaces. 
 

In this work, we continue our previous study by introducing the notion of compact standard 
single valued neutrosophic metric space.  Moreover, we give a certain number of properties 
and characterizations of this notion and the relationships between them. 
 

 

Keywords: Metric space, Single valued neutrosophic set, Compactness. 
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ON THE INTERSECTION OF k-LUCAS SEQUENCES AND

SOME BINARY SEQUENCES

SALAH EDDINE RIHANE AND ALAIN TOGBÉ

Abstract. For an integer k ≥ 2, let (L
(k)
n )n be the k-generalized Lucas

sequence which starts with 0, . . . , 0, 2, 1 (k terms) and each term after-
wards is the sum of the k preceding terms. In this paper, we find all
the k-generalized Lucas numbers which are Fibonacci, Pell or Pell-Lucas

numbers i.e., we study the Diophantine equations L
(k)
n = Fm, L

(k)
n = Pm

and L
(k)
n = Qm in positive integers n, m, k with k ≥ 3.

2010 Mathematics Subject Classification. 11B39, 11J86.

Keywords and phrases. k-generalized Lucas numbers, Fibonacci
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1. Introduction

The Fibonacci (Fn)n≥0 and Lucas (Ln)n≥0 sequences are given by

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2, for all n ≥ 2

and

L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2, for all n ≥ 2,

receptively. A few terms of these sequences are

(Fn)n≥0 = {0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, · · · }
and

(Ln)n≥0 = {2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, · · · }.
The Pell (Pn)n≥0 and Pell-Lucas (Qn)n≥0 sequences are given by

P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2, for all n ≥ 2

and

Q0 = 2, Q1 = 2, Qn = 2Qn−1 + Qn−2, for all n ≥ 2,

receptively. A few terms of these sequences are

(Pn)n≥0 = {0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782, · · · }
and

(Qn)n≥0 = {2, 2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, 16238, 39202, 94642, · · · }.
In [1], Alekseyev prove that F ∩ L = {1, 2, 3} and P ∩ L = {1, 2, 29}.
Let k ≥ 2 be an integer. We consider a generalization of Lucas sequence

called the k-generalized Lucas sequence L
(k)
n defined as

(1) L(k)
n = L

(k)
n−1 + L

(k)
n−2 + · · · + L

(k)
n−k, for all n ≥ 2,

1
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with the initial conditions L
(k)
−(k−2) = L

(k)
−(k−3) = · · · L(k)

−1 = 0, L
(k)
0 = 2, and

L
(k)
1 = 1. If k = 2, we obtain the classical Lucas sequence i.e L

(2)
n = Ln. If

k = 3, then the 3-Lucas sequence is

(L(3)
n )n≥−1 = {0, 2, 1, 3, 6, 10, 19, 35, 64, 118, 217, 399, 734, 1350, 2483, 4567, . . .}.

If k = 4, then the 4-Lucas sequence is

(L(4)
n )n≥−2 = {0, 0, 2, 1, 3, 6, 12, 22, 43, 83, 160, 308, 594, 1145, 2207, 4254, 8200, . . .}.

2. Main results

In [16], we extend the result of Alekseyev, more precisely, we solve the
Diophantine equations

(2) L(k)
n = Fm,

(3) L(k)
n = Pm

and

(4) L(k)
n = Qm.

We show the following results.

Theorem 2.1. All the integer solutions (n,m, k) of Diophantine equation
(2) are

(0, 3, k), (1, 1, k), (1, 2, k) and (2, 4, k).

Thus F ∩ L(k) = {1, 2, 3}.
Theorem 2.2. All the integer solutions (n,m, k) of Diophantine equation
(3) with k ≥ 4 are

(0, 2, k), (1, 1, k) and (4, 4, k).

If k = 3, then all the integer solutions (n,m, k) of Diophantine equation (3)
are

(0, 2, 3) and (1, 1, 3).

Hence, P ∩ L(k) = {1, 2, 12}.
Theorem 2.3. All the integer solutions (n,m, k) of Diophantine equation
(4) with k ≥ 3 are

(0, 0, k), (0, 1, k) and (3, 2, k).

Therefore, Q ∩ L(k) = {2, 6}.
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PRESCRIBED Q-CURVATURE TYPE PROBLEM ON

COMPACT MANIFOLDS

MOHAMED BEKIRI

Abstract. In this work, we investigate the existence of changing-sign
solution to Dirichlet elliptic problem involving Paneitz-Branson type
operator on compact Riemannian manifold with boundary.

2010 Mathematics Subject Classification. 53A30, 58J05, 53C21.
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1. Define the problem

Given (M, g) be a smooth Riemannian compact manifold with boundary
of dimension (n ≥ 5). We let A be a smooth symmetric (2, 0)-tensor on M
and a ∈ C∞ (M).
The goal in this work is to study the following Dirichlet elliptic problem

(1)

{
Pgu = λf |u|2]−2 u in M
u = φ1, ∂νu = φ2 on ∂M

where

(2) Pgu = ∆2
gu− divg

(
A (∇u)#

)
+ au.

is the Paneitz-Branson type operator, φ1, φ2 ∈ C∞ (∂M) are boundary data
such as φ1 is a sign-changing function, f ∈ C∞ (M) is a positive function
and 2] = 2n

n−4 is the Sobolev critical exponent.
More precisely, we want to find some conditions on the operator Pg and f ,
for the equation (1) to have a nodal (changing-sign) solution u ∈ H2

2,0(M)∩
C4,α(M).
The problem (1) has the peculiarity of containing the critical Sobolev expo-
nent, which leads us to use the variational approach developed by Yamabe
[4] and used by Holcman [3].
The problem (1) is equivalent to the following problem

(3)

{
Pgw = λf |w + h|2]−2 (w + h) in M
w = ∂νw = 0 on ∂M

where h ∈ H2
2 (M) ∩ C4,α(M) is the unique solution of the following linear

problem {
∆2
gh− divg

(
A (∇h)#

)
+ ah = 0 in M

h = φ1 and ∂νh = φ2 on ∂M

1
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PROPERTIES OF HOMODERIVATIONS ON LATTICE

STRUCTURES

MOURAD YETTOU AND ABDELAZIZ AMROUNE

Abstract. In this paper, the concept of homoderivation on a lattice as
a combination of two concepts of meet-homomorphisms and derivations
is introduced. Some characterizations and properties of homoderivations
are provided. The relationship between derivations and homoderivations
on a lattice is established. Also, an interesting class of homoderivations
namely isotone homoderivations is studied. A characterization of the
isotone homoderivations in terms of the meet-homomorphisms is given.
Furthermore, a sufficient condition for a homoderivation to become iso-
tonic is established.

2010 Mathematics Subject Classification. 03G10, 06B05, 06B10,
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1. Define the problem
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RICCI-PSEUDO-SYMMETRIC GENERALIZED

S-SPACE-FORMS

RACHIDA KAID AND MOHAMED BELKHELFA

Abstract. The purpose of this work is to examine the problem of sym-
metry properties of the generalized S-space-form with two structure
vectors fields, that generalized naturally the S-space-form M2n+s(c)
which is not pseudo-symmetric for s ≥ 2, n ≥ 1 and c 6= s. However
for s = 1 this one is reduced to Sasakian space-form, which is pseudo-
symmetric. We establish that, under some conditions, particular gener-
alized S-spaces form can be Ricci pseudo-symmetric.

2010 Mathematics Subject Classification. 53A55, 53B20, 53C35.
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1. Define the problem

K. Yano [8] introduced the notion of f -structure on a (2n + s)- dimen-
sional manifold as a tensor field f of type (1, 1) and rank 2n satisfying
f3 + f = 0. Almost complex and almost contact structures, for respectively
s = 0 ans s = 1, are well-known examples of f -structures. D. E. Blair [3]
introduced the K-structure on a manifold M2n+s with an f -structure, as
the analogue of the Kähler structure in the almost complex case and of the
quasi-Sasakian structure in the almost contact case. The S-manifold is a
class of the K-manifold and its curvature tensor is completely determined
by the f -sectional curvature. When the f -sectional curvature is constant,
the S-manifold is said to be a S-space form. Later, M. Kobayashi and S.
Tsuchiya in [7] got expression of the curvature tensor field of a S-space
form. In [1] is introduced the notion of a generalized Sasakian space form
as an almost contact metric manifold (M,f, ξ, η, g) whose curvature tensor
satisfies

R(X,Y )Z = f1(g(Y,Z)X − g(X,Z)Y )

+ f2(g(X, fZ)fY − g(Y, fZ)fX

+ 2g(X, fY )fZ)(1)

+ f3(η(X)η(Z)Y − η(Y )η(Z)X

+ g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ)

for all vector fields X,Y, Z and certain differentiable functions f1, f2, f3 on
M. This generalizes the concept of Sasakian space form as well as generalized

complex space form did with complex space form. If f1 =
c+ 3

4
and f2 =

1
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f3 =
c− 1

4
, the generalized Sasakian-space-form is reduced to a Sasakian-

space-form with f -sectional curvature c.
The generalized S-space-form with two structure vectors fields [4], gen-

eralized naturally the S-space-form M2n+s(c) where c is the f -sectionnal
curvature, in the same way as generalized Sasakian space forms general-
ized the Sasakian space forms, and it is defined as a metric f -manifold
(M,f, η1, η2, ξ1, ξ2, g) with two structure vector fields ξ1 and ξ2 such that
the curvature tensor field satisfies (see [4])

R(X,Y )Z = F1{g(Y,Z)X − g(X,Z)Y }
+ F2{g(X, fZ)fY − g(Y, fZ)fX + 2g(X, fY )fZ}
+ F3{η1(X)η1(Z)Y − η1(Y )η1(Z)X + g(X,Z)η1(Y )ξ1

− g(Y, Z)η1(X)ξ1}
+ F4{η2(X)η2(Z)Y − η2(Y )η2(Z)X + g(X,Z)η2(Y )ξ2

− g(Y, Z)η2(X)ξ2}(2)

+ F5{η1(X)η2(Z)Y − η1(Y )η2(Z)X + g(X,Z)η1(Y )ξ2

− g(Y, Z)η1(X)ξ2}
+ F6{η2(X)η1(Z)Y − η2(Y )η1(Z)X + g(X,Z)η2(Y )ξ1

− g(Y,Z)η2(X)ξ1}
+ F7{η1(X)η2(Y )η2(Z)ξ1 − η2(X)η1(Y )η2(Z)ξ1}
+ F8{η2(X)η1(Y )η1(Z)ξ2 − η1(X)η2(Y )η1(Z)ξ2}

for any X,Y, Z ∈ χ(M) and where F1, . . . , F8 are differentiable functions on
M.

The aim of this work, is to look at the problem of symmetry properties
of the generalized S-space-form with two structure vectors fields. The S-
space-forms M2n+s(c), are not pseudo-symmetric for s ≥ 2, n ≥ 1 and c 6= s
[6]. For s = 1 this one is reduced to Sasakian space-form, in this case
the second author and al [2] have shown that it is pseudo-symmetric. We
study the Ricci pseudo-symmetry for the generalized S-space-forms. We
establish that the generalized S-space-forms with two structure vectors fields
which are metric f -K-contact manifolds and then S-manifolds, can’t be Ricci
pseudo-symmetric, we also studied the generalized S-space-forms which are

the warped product M = R ×h M̃, where h > 0 is a differentiable function

on R and M̃ = M̃(f1, f2, f3) [4] is a genelized Sasakian space form. We give
conditions on the functions h and f1, f2, f3 under which these generalized
S-spaces forms can be Ricci pseudo-symmetric.

We have organized the paper in the following way: we introduce the
subject and his context in the first section, in Section 2, we recall the notions
of Ricci pseudo-symmetry [5] and we review basic formulas of metric f -
manifolds meaning. The third Section, is devoted to the generalized S-
space-forms. Finally, in Section 4 we look at the problem of symmetry
properties of the generalized S-space-form with two structure vectors fields
[4].
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REPRESENTATION OF THE FUZZY RELATIONS THAT A

BINARY RELATION IS COMPATIBLE WITH.

HASSANE BOUREMEL

Abstract. The notion of compatibility expresses that elements that
are similarly related to other related elements are related as well. This
notion is an important extension of the extensionality of a mapping
between two universes with L-fuzzy equality was introduced by Höhle
and Blanchard.
Also this notion is a similar of the compatibility of a fuzzy relation
with respect to a L-fuzzy equality and L-fuzzy equivalence rlations was
introduced by Bělohlávek on the fuzzy approach to concept lattices.

The main aim of this work is the representation of some types of the
L-fuzzy relations that a binary relation is compatible with.

Keywords and phrases. Lattice, residuated lattice, fuzzy set, fuzzy
relation, Clone relation, Compatibility.

1. Define the problem

Solving the general problem of characterizing the fuzzy equivalence re-
lations a given binary relation is compatible with by mean of the clone
relation.
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SOME BIHARMONIC PROBLEMS ON THE TANGENT

BUNDLE WITH A BERGER-TYPE DEFORMED SASAKI

METRIC

ABDALLAH MEDJADJ, HICHEM EL HENDI, AND BOUAZZA KACIMI

Abstract. Let (M2k, φ, g) be an almost anti-paraKähler manifold and
TM its tangent bundle equipped with the Berger type deformed Sasaki

metric gBS and the paracomplex structure φ̃. In this paper, we deal
with the biharmonicity of canonical projection π : TM −→ M and a
vector field X which is considered as a map X : M −→ TM .

2010 Mathematics Subject Classification. 53C07, 53C15.

Keywords and phrases. Berger type deformed Sasaki metric, anti-
paraKähler manifold, biharmonic map.

1. Define the problem

Studying the harmonocity and the biharmonicity of map in an almost
anti-paraKähler manifold and TM its tangent bundle.
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Title: Some identities of Mersenne-Lucas numbers and generationg function of their products 

Mourad Chelgham and Ali Boussayoud. 

Abstract 

    In this work, we will introduce new definition of k-Mersenne-Lucas numbers and investigate some 

properties. Then, we obtain some identities and estabished connection formulas between k-

Mersenne-Lucas numbers and k-Mersenne numbers through use of Binet's formula. We also give the 

generating function of their Hadamard products (square, successive terms and non successive terms) 

using symetric functions technic. 
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SOME PROPERTIES OF TERNARY RELATIONS AND

THEIR CLOSURES

NORELHOUDA BAKRI AND LEMNAOUAR ZEDAM

Abstract. We study the problem of closing a ternary relation with re-
spect to various relational properties, for instance, reflexivity, symmetry
and cyclicity with a focus on the many transitivity properties that have
been proposed for ternary relations over the past years.

2010 Mathematics Subject Classification. 03E20, 97E60.

Keywords and phrases. Ternary relation, transitivity, closure.

1. Define the problem

Relations come in many flavors, such as binary or ternary, crisp or fuzzy,
et cetera. Although generally less popular than binary relations, ternary
relations also play a diverse role in many branches of mathematics. In re-
cent years, the interest in ternary relations is on the rise [2, 3]. Ternary
relations can display various interesting properties, such as reflexivity, sym-
metry, cyclicity and transitivity, some of which do not exist in the binary
case (such as cyclicity) or come in a multitude of variations in the ternary
case (such as transitivity). In case a binary relation R does not possess a
desired property P , the question arises whether it is possible to find (if it
exists) the smallest binary relation including R and possessing property P ,
which is called its P -closure. The main aim is to derive results similar to
those of Bandler and Kohout [1] for the setting of ternary relations.
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SOME PROPERTIES OF TRELLISES

ABDELKRIM MEHENNI AND LEMNAOUAR ZEDAM

Abstract. In the present paper, we study an extended structure of a
lattice (trellis, for short) by considering sets with a reflexive and antisym-
metric, but not necessarily transitive relation. Of course, by postulating
the existence of least upper bounds and greatest lower bounds of each
pair of elements similarly to the case of lattices. Also, we present some
properties analogous to nearly all the basic theorems of lattice theory,
thus demonstrating the superfluity of the assumption of associativity.

2010 Mathematics Subject Classification. 06B05, 06B15.
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element, transitive element.

1. Define the problem

The material presented herein is a generalization of the concepts of par-
tial order and lattice [3, 4, 8, 10]. By starting out with a reflexive and
antisymmetric, but not necessarily transitive, order, we define least upper
bound and greatest lower bound similarly as for partially ordered sets, thus
obtaining a structure, called a trellis [5, 11], in which these operations are
not necessarily associative. With this approach we can prove nearly all the
basic theorems of lattice theory, thus demonstrating the superfluity of the
assumption of associativity. Moreover, in the presence of certain additional
assumptions, associativity follows as a consequence.

The ideas of transitivity and partial order are, without question, fun-
damental in a wide variety of mathematical theories. The mathematical
underground, however, has been simmering for some time with notions of
non-transitive relationssome arising from common, every-day observations
and some from purely mathematical considerations.

An important step in the theory of partial orderings was the postulation
of least upper bounds and greatest lower bounds and the development of
the theory of lattices. Transitivity is necessary for the associativity of the
operations of least upper bound and greatest lower bound. And associativity
has been regarded as essential to the theory of lattices as the proofs of many
theorems heavily depend upon it. So it would seem that transitivity is an
indispensable requirement for lattice theory. However, starting out with
a reflexive and antisymmetric, but not necessarily transitive, order, we can
define least upper bounds and greatest lower bounds similarly as for partially
ordered sets. With this approach we can prove theorems analogous to nearly
all the basic theorems of lattice theory, thus demonstrating the superfluity
of the assumption of associativity. Moreover, in the presence of certain
additional assumptions, such as distributivity, relative complementation and
modularity, or others, associativity follows as a consequence.

1
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The material herein presented contains a foundation for the theory of non-
transitive orderings. By stipulation of the existence of least upper bounds
and greatest lower bounds we obtain a structure, called a trellis, having
properties similar to those of lattices. It is indeed surprising how much can
be done under so few assumptions.

In the present paper we study a generalization of lattices by considering
sets with a reflexive and antisymmetric, but not necessarily transitive, re-
lation and by postulating the existence of least upper bounds and greatest
lower bounds similarly as for partially ordered sets; and, alternatively, by
considering sets with two operations that are commutative, absorptive, and,
what will be called, part-preserving. Using this approach we are able to
prove theorems analogous to nearly all the basic theorems of lattice theory,
thus demonstrating the superfluity of the assumption of associativity. More-
over, in the presence of certain additional assumptions, such as distributivity,
relative complementation and modularity, or others, associativity follows as
a consequence.
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Title : Surfaces of �nite type in ^SL (2;R)
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Abstact : In this paper, we prove that �X = 2H where � is Laplacian
operator, X (r; �; �) the position vector �eld and H is the mean curvature vector

�eld of surface S in ^SL (2;R) and we study surfaces as graph in ^SL (2;R) which
has �nite type immersion.
Mathematics Subject Classi�cation: 53B05; 53B21; 53C30.
Keywords: Laplacian operator, ^SL (2;R) geometry, surfaces of coordinate

�nite type.
In this work we study the surfaces as graphs of functions � = f (r; �) in
^SL (2;R) satisfy the condition:

�xi = �ixi

where �i 2 R and xi are the coordinate functions of the surface.
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THE SKEW REVERSIBLE CODES OVER FINITE FIELDS

RANYA DJIHAD BOULANOUAR, AICHA BATOUL,
AND DELPHINE BOUCHER

Abstract. In this paper we give a necessary and sufficient condition
for a skew λ-constacyclic code generated by a skew polynomial g(x)
(not necessarily central) to be a LCD code under some assumptions. We
make some link with skew reversible codes and conjugate-skew reversible
codes.

Keywords and phrases. Skew polynomial rings, Skew constacyclic
codes, LCD codes, conjugate-skew reversible codes, skew reversible codes.

1. Preliminaries

Let q be a prime power, Fq a finite field and θ an automorphism of Fq.
We define the skew polynomial ring R as

R = Fq[x; θ] = {a0 + a1x+ . . .+ an−1x
n−1 | ai ∈ Fq and n ∈ N}

under usual addition of polynomials and where multiplication is defined
using the rule

∀a ∈ Fq, x · a = θ(a)x.

The ring R is noncommutative unless θ is the identity automorphism on
Fq. According to [9], an element f in R is central if and only if f is in

Fθq[xµ] where µ is the order of the automorphism θ and Fθq is the fixed field
of θ. The two-sided ideals of R are generated by elements having the form
(c0+c1x

µ+. . .+cnx
nµ)xl, where l is an integer and ci belongs to Fθq. Central

elements of R are the generators of two-sided ideals in R [3]. The ring R is
Euclidean on the right : the division on the right is defined as follows. Let
f and g be in R with f 6= 0. Then there exist unique skew polynomials q
and r such that

g = q · f + r and deg(r) < deg(f).

If r = 0 then f is a right divisor of g in R ([9]). There exist greatest common
right divisors (gcrd) and least common left multiples (lclm). The ring R is
also Euclidean on the left : there exist a division on the left, greatest common
left divisors (gcld) as well as least common right multiples (lcrm).

In what follows, we consider a positive integer n and a constant λ in F∗q .
According to [3] and [5], a linear code C of length n over Fq is said to be

(θ, λ)-constacyclic or skew λ-constacyclic if it satisfies

∀c ∈ Fnq , c = (c0, c1, . . . , cn−1) ∈ C ⇒ (λθ(cn−1), θ(c0), . . . , θ(cn−2)) ∈ C.
Any element of the left R-module R/R(xn − λ) is uniquely represented

by a polynomial c0 + c1x + . . . + cn−1x
n−1 of degree less than n, hence is

identified with a word (c0, c1, . . . , cn−1) of length n over Fq.
1
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In this way, any skew λ-constacyclic code C of length n over Fq is identified
with exactly one left R-submodule of the left R-module R/R(xn−λ), which
is generated by a right divisor g of xn − λ. In that case, g is called a skew
generator polynomial of C and we will denote C = 〈g〉n.

Note that the skew 1-constacyclic codes are skew cyclic codes and the
skew (-1)-constacyclic codes are skew negacyclic codes.

The Hamming weight wt(y) of an n-tuple y = (yl, y2, . . . , yn) in Fnq is
the number of nonzero entries in y, that is, wt(y) =| {i : yi 6= 0} |. The
minimum distance of a linear code C is minc∈C,c6=0wt(c).

The Euclidean dual of a linear code C of length n over Fq is defined

as C⊥ = {x ∈ Fnq | ∀y ∈ C,< x, y >= 0} where for x, y in Fnq , < x, y >:=∑n
i=1 xiyi is the (Euclidean) scalar product of x and y. A linear code is

called an Eulidean LCD code if C ⊕ C⊥ = Fnq , which is equivalent to

C ∩ C⊥ = {0}.
Assume that q = r2 is an even power of an arbitrary prime and denote

for a in Fq, a = ar. The Hermitian dual of a linear code C of length n

over Fq is defined as C⊥H = {x ∈ Fnq | ∀y ∈ C,< x, y >H= 0} where for x, y

in Fnq , < x, y >H :=
∑n

i=1 xiyi is the (Hermitian) scalar product of x and y.

The code C is a Hermitian LCD code if C ∩ C⊥H = {0}.
The skew reciprocal polynomial of g = Σk

i=0gix
i ∈ R of degree k is

g∗ = Σk
i=0θ

i(gk−i)xi. If g0 does not cancel, the left monic skew reciprocal
polynomial of g is g\ = (1/θk(g0))g∗. If a skew polynomial is equal to its
left monic skew reciprocal polynomial, then it is called self-reciprocal.

Consider C a skew λ-constacyclic code of length n and skew generator
polynomial g. According to Theorem 1 and Lemma 2 of [4], the Euclidean
dual C⊥ of C is a skew λ−1-constacyclic code generated by h\ where Θn(h) ·
g = xn−λ and for a(x) =

∑
aix

i ∈ R, Θ(a(x)) :=
∑
θ(ai)x

i. In particular,
when λ is fixed by θ and n is a multiple of the order µ of θ, then h is fixed by
Θn and xn−λ is central, therefore one gets h·g = g ·h = xn−λ. If q = r2, the

Hermitian dual C⊥H of C is generated by h\ where for a(x) =
∑
aix

i ∈ R,

a(x) :=
∑
aix

i.

Lemma 1.1. [2, Lemma 4] Consider h and g in R. Then (h · g)∗ =

Θdeg(h)(g∗) · h∗.

In the following, we give a necessary and sufficient condition for a skew
λ-constacyclic code to be a LCD code when λ2 = 1.

Theorem 1.2. [10, Theorem 4.1] Assume that λ2 = 1. Consider a skew λ-
constacyclic code C with skew generator polynomial g and length n. Consider
h such that hg = gh = xn − λ.

(1) C is an Euclidean LCD if and only if gcrd(g, h\) = 1.
(2) If q is an even power of a prime number, q = r2, C is an Hermitian

LCD code if and only if gcrd(g, h\) = 1.

1.1. LCD and skew reversible skew constacyclic codes. Over a finite
field Fq, there is a strong link between LCD cyclic codes and reversible codes
( [6], [8]).
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Definition 1.3. Let Fq be the finite field where q is a prime power. A code C
is called reversible if (c0, c1, . . . , cn−1) ∈ C implies that (cn−1, cn−2, . . . , c0) ∈
C.

The cyclic code generated by the monic polynomial g is reversible if and
only if g(x) is self-reciprocal (i.e g(x) = g](x)) [8, Theorem 1]. Furthermore,
if q is coprime with n, a cyclic code of length n is LCD if and only if C is
reversible [6]. The example below shows that it is not necessarily the case
for skew cyclic codes when θ is not the identity.

Example 1.4. Let F9 = F3(w) where w2 = w + 1, θ the Frobenius auto-
morphism and R = F9[x; θ]. We have :

x2 − 1 = (x+ w2) · (x+ w2)·
The skew polynomial g = x + w2 is such that g(x) = g](x). The greatest
common right divisor of g(x) and h∗(x) is x+w2 (i.e gcrd(g(x), h∗(x)) 6= 1)
therefore, by Theorem 1.2, C is not an LCD code.

Definition 1.5. Let Fq be the finite field where q is a prime power and θ be
an automorphism of Fq, C be a code of length n over Fq.

(1) The code C is called a skew reversible code if

∀c ∈ C c = (c0, c1, . . . , cn−1) ∈ C =⇒
(
cn−1, θ(cn−2), . . . , θn−1(c0)

)
∈ C

(2) If q is an even power, q = r2, C is a conjugate-skew reversible
code if

∀c ∈ C c = (c0, c1, . . . , cn−1) ∈ C =⇒
(
cn−1, θ(cn−2), . . . , θn−1(c0)

)
∈ C

Before we prove our main results in this section, we define the following
set: let f, g in R such that gcrd(f(x), g(x)) = 1 ,

A(f,g) :=
{

(a(x), b(x)) ∈ R2 | a(x)f(x) + b(x)g(x) = 1 and b(x)g(x) = g(x)b(x)
}
.

Theorem 1.6. Consider g, h in R and λ ∈ {−1, 1} such that xn − λ =
g · h = h · g with deg(h) = k.

(1) Assume that A(g,Θb(h∗)) is nonempty. Then g = Θk+b(g\) for all b

in {0, 1}.
(2) If the greatest common right divisor of h(x) and g(x) is equal to 1,

g0 in Fθq and g = Θk+b(g\) then gcrd(g(x),Θb(h\(x)))) = 1 for all b
in {0, 1}.

(3) If the greatest common left divisor of g and h is equal to 1 and if
g = Θb(g\), then gcrd(g(x),Θb(h\(x))) = 1 for all b in {0, 1}.

In the following, using the Theorem 1.6 we give a necessary and sufficient
condition for a skew constacyclic code to be an Euclidean LCD code and
Hermitian LCD code.

Corollary 1.7. Consider C a skew λ-constacyclic code with skew generator
g and length n.

(1) If A(g,h∗) is nonempty and if C is an Euclidean LCD skew consta-

cyclic code then g = Θk(g\).
(2) If A(g,Θ(h∗)) is nonempty and if C is an Hermitian LCD skew con-

stacyclic code then g = Θk+1(g\) .
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(3) If the greatest common right divisor of h(x) and g(x) is equal to
1, g0 in Fθq and g(x) = Θk+b(g\(x)) then C is an Euclidean LCD
skew constacyclic code when b = 0 and C is an Hermitian LCD skew
constacyclic code when b = 1.

(4) If the greatest common left divisor of h(x) and g(x) is equal to 1
and g = Θb(g\) then C is an Euclidean LCD skew constacyclic code
when b = 0 and C is an Hermitian LCD skew constacyclic code when
b = 1.

(5) If the greatest common left divisor of h(x) and g(x) is equal to 1
and C is a skew reversible code (resp.conjugate-skew reversible code)
then C is an Euclidean LCD skew constacyclic code (resp. C is an
Hermitian LCD skew constacyclic code ).

Remark 1.8. Suppose gcrd(g(x),Θb(h∗))) = 1, there are polynomials (a(x), b(x)) ∈
A(g,Θb(h∗)), as a special case of Corollary 1.7 we obtain C is an Euclidean
LCD skew constacyclic code or C is an Hermitian LCD skew constacyclic
code then g = Θb(g\) when the order µ of θ divides k.
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TRIVECTORS OF RANK 8 OVER A FINITE FIELD

NOUREDDINE MIDOUNE

ABSTRACT
For vector spaces of dimension 8 over a �nite �eld Fq of characteristic 2 all
trilinear alternating forms are determined.

Mathematics Subject Classi�cation : Primary 15A69, Secondary 15A75,
05A15, 15A18
Keywords : trivector, isotropy groups, classi�cation.

DEFINE THE PROBLEM

Let V be an 8-dimensional vector space over a �eld K and let ^3V
denote the exterior power of degree 3 over K: The classi�cation of trivec-
tors is the study of the action of general linear group GL(V ) on the K-
vector space ^3V: By virtue of the canonical identi�cation ^3V � ' (^3V )�;
f:! = (^3f)(!); there is no di¤erence between trivectors and trilinear al-
ternating forms. This classi�cation is motivated by many important ap-
plications, especially in the theory of codes ([8]) and generalized elliptic
curves [1]: G.B.Gurevitch [3]; D. Djokovic [2]; L.Noui [7]; N.Midoune and
L.Noui [5] ; J.Hora and P.Pudlak [4] give an answer to the classi�cation with
K = C;K = R; K algebraically closed �eld of arbitrary characteristic, K a
�nite �eld of characteristic other than 2 and 3 and K = Z�2Z respectively.
We are interested in classi�cation of trivectors of an eight dimensional

vector space over a �nite �eld of characteristic 2: By this result we have, in
particular, for q = 2 the theorem of J.Hora[4] :
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THE AVERAGE HULL DIMENSION OF CYCLIC CODES

OVER FINITE NON CHAIN RINGS

SARRA TALBI, AICHA BATOUL, EDGAR MARTÍNEZ-MORO,
AND ALEXANDRE FOTUE TABUE

Abstract. In this work, we study the hull of cyclic codes over a fi-
nite non chain ring R = Fq + vFq, where v2 = v. The main tool for
the characterization of the hull of cyclic codes is given in term of their
generator polynomials. We also establish the average q−dimension of
the hull of cyclic codes of length n over R. The formula for the average
q−dimension of the hull of cyclic codes of length n over R is derived.

2010 Mathematics Subject Classification. 94B15, 12E20, 12D05.

Keywords and phrases. Hulls, Cyclic codes, Average q−dimension.

1. Preliminary

Let R = Fq+vFq, where q = pm, p is prime number and v2 = v. Clearly
R ' Fq[v]/ < v2−v > is a non chain ring with q2 element. It is a semi-local
ring with maximal ideals < v > and < 1 − v > . R is commutative ring
with identity and characteristic p.

A linear code C of length n over R is defined to be an R−submodule of
Rn. the Euclidean dual of C is defined to be the set

C⊥ =

{
(x0, x1, ..., xn−1) ∈ Rn|

n−1∑

i=0

xici = 0 for all (c0, c1, ..., cn−1) ∈ C
}
.

The Eulidean hull of C is defined as Hull(C) = C ∩ C⊥.

1.1. Cyclic codes over R = Fq+vFq. A linear codes of length n over R is
said to be cyclic if (cn−1, c0, ..., cn−2) ∈ C for all (c0, c1, ..., cn−1) ∈ C. Each
cyclic codes C of length n over R can be viewed as an ideal of the quotient
ring Rn = R[x]/ < xn − 1 >, and the corresponding ideal of a cyclic code
C has generators of the form

< (1− v)f1(x), vf2(x) >,

where f1(x) and f2(x) are monic divisors of xn − 1 over Fq. Furthermore,

|C| = p2n−deg f1(x)−deg f2(x). In this case, the q−dimension of C is 2n −
deg f1(x)− deg f2(x).

Let g(x) = a0 +a1x+ ...+ak−1x
k−1 in Fq[x] a monic polynomial such that

a0 is a unit in Fq. The reciprocal polynomial of h(x) is defined to be h∗ =

a−1
0 xdeg h(x)h(

1

x
), if h(x) = h∗(x), h(x) is called self reciprocal polynomial.

Otherwise, h(x) and h∗(x) are called reciprocal polynomial pair. The dual
C⊥ is generated by

< (1− v)g∗1(x), vg∗2(x) >,
1
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where g1(x) =
xn − 1

f1(x)
and g2(x) =

xn − 1

f2(x)
.

Let n be a positive integer and write n = pvn̄, where gcd(n̄, p) = 1 and v
is a nonnegative integer. For coprime positive integers i and j, let ordj(i)
denote the multiplicative order of i modulo j. let

Nq = {k ≥ 1 : k|(ql + 1) for some l ∈ N}.
By [5, Equation(6)], the polynomial xn−1 can be factored into a product

of monic irreducible polynomials over Fq of the form

(1) xn−1 = (xn̄−1)p
v

=
∏

j | n̄
j∈Nq



γ(j;q)∏

i=1

gij(x)



pv

∏

j | n̄
j 6∈Nq



β(j;q)∏

i=1

fij(x)f∗ij(x)



pv

,

where

γ(j; q) =
φ(j)

ordj(q)
, β(j; q) =

φ(j)

2ordj(q)
,

fij(x) and f∗ij form a reciprocal polynomial pair of degree ordj(q) and gij(x)

is a self-reciprocal polynomial of degree ordj(q). Let

Bn̄ = deg
∏

j | n̄
j∈Nq



γ(j;q)∏

i=1

gij(x)


 =

∑

j | n̄
j∈Nq

φ(j)

ordj(q)
ordj(q) =

∑

j | n̄
j∈Nq

φ(j).

The number Bn̄ plays an important role in the study of the average q−dimension
of the hull of cyclic codes over R.

2. Hull of cyclic codes over Fq + vFq
We will denote by C(n;R) the set of all cyclic codes over length n over

R. The average q-dimension of the hull of cyclic codes of length n over R is

ER(n) =
∑

C∈C(n;R)

dimq(Hull(C))

|C(n;R)| .

In this section, The characterization of the hulls of cyclic codes of length n
over R is given in terms of their generators. Moreover, we give a formula
for the q−dimension of the hulls of cyclic codes of length n over R. Finally
an explicit formula for ER(n) is determined.

Theorem 2.1. Let C = (1 − v)C1 ⊕ vC2 be a cyclic code of length n over
R generated by < (1 − v)f1(x), vf2(x) >, where f1(x) and f2(x) are monic
divisors of xn − 1 over Fq. Then hull(C) is generated by

< (1− v)lcm(f1(x), g∗1(x)), vlcm(f2(x), g∗2(x)) >,

where g1(x) =
xn − 1

f1(x)
and g2(x) =

xn − 1

f2(x)
.

The q−dimension of Hull(C) is given in Theorem 2.3 based on the fol-
lowing lemma. The following lemma is required in its proof.

Lemma 2.2. Let v be a nonnegative integer. Let 0 ≤ x, y, z ≤ pv be integers.
Then the following statements hold.
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(1) 0 ≤ pv −max{x, pv − x} ≤ pv

2
.

(2) 0 ≤ 2pv − (max{y, pv − z}+ max{z, pv − y}) ≤ pv.
Theorem 2.3. Let n be a positive integer and write n = pvn̄, where gcd(p, n̄) =
1 and v ≥ 0 is an integer. The q−dimensions of the hull of cyclic codes of
length n over R are of the form

∑

j | n̄
j∈Nq

ordj(q).xj +
∑

j | n̄
j 6∈Nq

ordj(q).yj ,

where 0 ≤ xj ≤ γ(j; q)pv and 0 ≤ yj ≤ 2β(j; q)pv.

Example 2.4. Let n = 33 and p = 3. Then n̄ = 11 and v = 1. The divisors
of 11 are 1 and 11.

(1) We have 1 ∈ N3, so ord1(3) = 1 and γ(1; 3) = 1.
(2) We have 11 6∈ N3, so ord11(3) = 5 and β(11; 3) = 1, by Theorem

2.3, the q−dimensions of the hulls of cyclic codes of length n over R
are of the form

x1 + 5.y11,

where 0 ≤ x1 ≤ 3 and 0 ≤ y11 ≤ 6,
which are 0, 1, 3, 5, 6, 8, 10, 11, 13, 15, 16, 18, 20, 21, 23, 25, 26, 28, 30, 31, 33.

Lemma 2.5. Let v be a nonnegative integer and let 0 ≤ a, b, c ≤ pv be
integers. Then

(1) E(max{a, pv − a}) =
3pv + 1

4
− δpv

4(pv + 1)
and

(2) E(max{b, pv − c}) =
pv(4pv + 5)

6(pv + 1)
,

where δpv = 1 if v > 0 and δpv = 0 if v = 0.

The formula for the average q−dimension of the hull of cyclic codes of
length n over R is given as follows.

Theorem 2.6. Let n be a positive integer and write n = pvn̄, where gcd(p, n̄) =
1 and v ≥ 0 is an integer. The average q−dimensions of the hull of cyclic
codes of length n over R is

E(n) = n

(
2

3
− 1

3(pv + 1)

)
− Bn̄

(
pv + 1

6
+

2− 3δpv

6(pv + 1)

)
.
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 The Fundamental Mapping Over Group 𝑬𝒏
𝒂,𝒃 

 Chillali Abdelhakim  

Abstract.  In this work we study the fundamental mappings of group 𝐸𝒂,𝒃 [5], 
group of an elliptic curve defined over ring  𝐴 = 𝔽 [𝜀];  𝜀 = 0, that is given by an 
homogeneous equation of the form  𝑌 𝑍 = 𝑋 + 𝑎𝑋𝑍 + 𝑏𝑍  where 𝑎, 𝑏 ∈  𝐴  and 
4𝑎 + 27𝑏  is invertible in  𝐴 . 

Keywords: Elliptic Curves; Cryptography; Generic Group; Finite Field. 
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THE BI-PERIODIC r-NUMBERS WITH NEGATIVE

SUBSCRIPTS

N. ROSA AIT-AMRANE AND HACÈNE BELBACHIR

Abstract. In [2], we have defined a new class of the bi-periodic r-
Fibonacci sequence. Then, we introduced a new family of the companion
sequences of the bi-periodic r-Fibonacci sequence, named bi-periodic r-
Lucas sequence of type s, which generalize the classical Fibonacci and
Lucas sequences. Afterwards, we established some properties of these
sequences. Here, we propose to extend all the results to the negative
subscripts and give more properties of the sequences.

...

2010 Mathematics Subject Classification. 11B39, 11B65, 05A10,
11A15, 11M36.

Keywords and phrases. Bi-periodic Fibonacci sequence, bi-periodic
Lucas sequence, generating function, Binet formula, explicit formula,
negative indices.

1. Introduction

In [2], we defined a new class of the bi-periodic r-Fibonacci sequence

(U
(r)
n )n and introduced a new family of companion sequences associated

to the bi-periodic r-Fibonacci sequence indexed by the parameter s, with

1 ≤ s ≤ r, named the bi-periodic r-Lucas sequence of type s, (V
(r,s)
n )n. After

that, we expressed V
(r,s)
n in terms of U

(r)
n and s. Actually, first we defined

the bi-periodic r-Fibonacci sequence (U
(r)
n )n

Definition 1.1. For a, b, c, d nonzero real numbers and r ∈ N, the bi-

periodic r-Fibonacci sequence (U
(r)
n )n is defined by, for n ≥ r + 1

(1) U (r)
n =

{
aU

(r)
n−1 + cU

(r)
n−r−1, for n ≡ 0 (mod 2),

bU
(r)
n−1 + dU

(r)
n−r−1, for n ≡ 1 (mod 2),

with the initial conditions U
(r)
0 = 0, U

(r)
1 = 1, U

(r)
2 = a, . . . , U

(r)
r = abr/2cbb(r−1)/2c.

Secondly, we introduced a new family of companion sequences related to
the bi-periodic r-Fibonacci sequence, called the bi-periodic r-Lucas sequence

of type s, (V
(r,s)
n )n.

Definition 1.2. For any nonzero real numbers a, b, c, d and integers s, r
such that 1 ≤ s ≤ r, we define for n ≥ r + 1

V (r,s)
n =

{
bV

(r,s)
n−1 + dV

(r,s)
n−r−1, for n ≡ 0 (mod 2),

aV
(r,s)
n−1 + cV

(r,s)
n−r−1, for n ≡ 1 (mod 2),

1
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with the initial conditions V
(r,s)

0 = s+ 1, V
(r,s)

1 = a, V
(r,s)

2 = ab, . . . , V
(r,s)
r =

ab(r+1)/2cbbr/2c.

The bi-periodic r-Fibonacci sequence (U
(r)
n )n and the bi-periodic r-Lucas

sequence of type s, 1 ≤ s ≤ r satisfy the following linear recurrence relation.

Theorem 1.3. For a nonzero real numbers a, b, c, d and s, r such that 1 ≤
s ≤ r, the family of the bi-periodic r-Lucas sequence of type s satisfy, for
n ≥ 2r + 2

V (r,s)
n = abV

(r,s)
n−2 + (aξ(r+1)d+ bξ(r+1)c)V

(r,s)
n−r−1−ξ(r+1) − (−1)r+1cdV

(r,s)
n−2r−2.

After that, we expressed the bi-periodic r-Lucas sequence of type s, V
(r,s)
n

in terms of U
(r)
n .

Theorem 1.4. Let r and s be nonnegative integers such that 1 ≤ s ≤ r,
the bi-periodic r-Fibonacci sequence and the bi-periodic r-Lucas sequence of
type s satisfy the following relationship

V (r,s)
n =





U
(r)
n+1 + sdU

(r)
n−r, n ≥ r, for r odd,

U
(r)
n+1 + scbU

(r)
n−r−1 + scdU

(r)
n−2r−1, n ≥ 2r + 1, for r even.

2. Main results

In this work, we extend these numbers to their terms with negative sub-
scripts. Many results for new forms of these numbers, including Binet for-
mulas, generating functions, and some properties will be presented.
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On a new generalization of geometric polynomials
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Abstract
It is known that the ordered Bell numbers count all the ordered partitions of the set [n] =

{1, 2, . . . , n}. In this paper, we introduce the deranged Bell numbers that count the total number
of deranged partitions of [n]. We first study the classical properties of these numbers (generating
function, explicit formula, convolutions, etc.). Then we gave an asymptotic formula formula for
these numbers

Key words :Ordered Bell numbers, derangements, ordered set partitions, Stirling numbers, Bell numbers.

1 Introduction
A permutation σ of a finite set [n] := {1, 2, . . . , n} is a rearrangement (linear ordering) of the elements of [n],
and we denote it by

σ([n]) = σ(1)σ(2) · · ·σ(n).
A derangement is a permutation σ of [n] that verifies σ(i) 6= i for all (1 ≤ i ≤ n) (fixed-point-free permuta-

tion). The derangement number dn denotes the number of all derangements of the set [n].
A partition of a set [n] := {1, 2, . . . , n} is a distribution of their elements to k non-empty disjoint subsets

B1|B2| . . . |Bk called blocks. We assume that the blocks are arranged in ascending order according to their
minimum elements (minB1 < minB2 < · · · < minBk).

It is well-known that the Stirling numbers of the second kind, denoted
{
n
k

}
, count the partitions’ number of

the set [n] into k non-empty blocks. The numbers
{
n
k

}
satisfy the recurrence

{
n

k

}
=

{
n− 1

k − 1

}
+ k

{
n− 1

k

}
(1 ≤ k ≤ n),

with
{
n
0

}
= δn,0 (Kronecker delta) and

{
n
k

}
= 0 (k > n).

2 The deranged Bell numbers
Now, we introduce the notion of deranged partition and we study the deranged Bell numbers.

Definition 1. A deranged partition ψ̃ of the set [n] is a derangement σ̃ of the partition B1|B2| . . . |Bk, i.e.,
ψ̃([n]) = Bσ̃(1)|Bσ̃(2)| . . . |Bσ̃(k)

such that Bσ̃(i) 6= Bi for all (1 ≤ i ≤ k).

Definition 2. Let F̃n be the deranged Bell number which counts the total number of the deranged partitions
of the set [n].

Proposition 1. For all n ≥ 0 we have that

F̃n =
n∑

k=0

dk

{
n

k

}
. (1)

467



2.1 Exponential generating function
Theorem 1. The exponential generating function of deranged Bell numbers is given by

F̃(t) =
∑

n≥0

F̃n
tn

n!
=
e−(et−1)

2− et .

2.2 Explicit formula
Theorem 2. For any n ≥ 0, the sequence F̃n can be expressed explicitly as

F̃n =

n∑

k=0

k∑

i,j=0

(−1)k+i−j
i!

(
k

j

)
jn.

2.3 Dobiǹski’s formula
One of the most important result for Bell number was established by Dobiǹski [2, 4], where he expressed wn in
the infinite series form bellow

wn =
1

e

∑

k≥0

kn

k!
.

An analogue result for the ordered Bell number was given by Gross [3] as

Fn =
1

2

∑

k≥0

kn

2k
.

The Dobiǹski’s formula for F̃n is established by our next theorem

Theorem 3. For any n ≥ 0 we have

F̃n =
e

2

∑

j≥0

∑

k≥j

(−1)j
j!

kn

2k−j
.

2.4 Higher order derivatives and convolution formulas
Theorem 4. For any m ≥ 1 we have

F̃ (m)(t) = F̃(t)
m∑

i=0

m∑

j=i

(−1)i+jejtji
{
m

j

}
F i(t), (2)

where F̃ (m)(t) is the mth derivative of F̃(t).
We will use the classical singularity analysis technic (see Chapter 5 of [6]) to deduce the asymptotic behavior

a sequence an using the singularities of its generating function A(t).
Theorem 5. The asymptotic behavior F̃n is

F̃n
n!
∼ 1

2e logn+1(2)
+O

(
6.3213)−n

)
, n −→∞.
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Boundedness of the Numerical Range

R. Chettouh and S. Bouzenada

Department of Mathematics, Faculty of Science, University of Tebessa, Algeria

Abstract

This paper is concerned with the numerical range and some related properties of the
operator self-adjoint A, where A is bounded linear operator.

We show the following results:

(i) If A is a self-adjoin operator, then: 8n 2 N : W (An) � [W (A)]n :

(ii) Determine the smallest convex subset containing the numerical range of a bounded
linear operator on a Hilbert space.

(iii) Determine necessary and su¢ cient conditions such that the numerical range of a
bounded linear operator A 2 B (H) is a line segment, and we present a new set S; such that
S is a set of operators whose the numerical range W (A) is a line segment.

keywords: Numerical Range, Numerical Radius.

469



Probability and Statistics

470



A MAXIMUM PRINCIPLE FOR MEAN-FIELD
STOCHASTIC DIFFERENTIAL EQUATION WITH

INFINITE HORIZON

ABDALLAH ROUBI AND MOHAMED AMINE MEZERDI

Abstract. We consider an in�nite horizon optimal control of a system
where the dynamics evoves according to a mean-�eld stochastic di¤er-
ential equation and the cost functional is also of mean-�eld type. These
are systems where the coe¢ cients depend not only on the state but also
on its marginal distribution via some linear functional. Under some
concavity assumptions on the coe¢ cients as well as on the Hamiltonian,
we are able to prove a veri�cation theorem, which gives su¢ cient con-
dition for optimality for a given admissible control. In the absence of
concavity, we prove a necessary condition for optimality in the form of
a weak Pontriagin maximum principle, given in terms of stationarity of
the Hamiltonian.
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Keywords and phrases. Mean-�eld stochastic di¤erential equation,
In�nite horizon, Stochastic maximum principle, Backward stochastic
di¤erential equation, Adjoint process, Hamiltonian.
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A WALSH-FOURIER ANALYSIS OF SCHIZOPHRENIC

PATIENTS’ BRAIN FUNCTIONAL CONNECTIVITY

HOUSSEM BRAIRI AND TAREK MEDKOUR

Abstract. We consider the problem of analyzing the brain functional
connectivity of schizophrenic patients, using Walsh-Fourier analysis.To
this end, we propose three tests: the first one is based on the cumulative
Walsh periodogram, and is shown to converge to a Brownian bridge.
The second test is based on applying the Cramer–von Mises functional
to an estimate of the Walsh spectral density, and is shown to converge
to a Normal distribution, while the last test is based on a distance
to whiteness, and is shown to have an approximate scaled chi-square
distribution. Simulations are reported on the performance of the tests.

2010 Mathematics Subject Classification. 62M10, 60H40, 62M15.

Keywords and phrases. Discrete-valued time series, Walsh-Fourier
Analysis, White noise.

1. Define the problem

In view of their important role, discrete-valued time series is attracting
considerable attention due to its many uses in several studies such as EEG
sleep patterns, gene characterization, geomagnetic reversals in the polar-
ity of the earth · · · etc. In this work, we consider a problem which is of
fundamental importance and has not been addressed yet, namely testing
a discrete-valued time series for whiteness in the sequency domain. The
problem is formulated as follows: Let X(0), X(1), · · · , X(N − 1) be a sam-
ple from a zero mean, second-order stationary discrete-valued time series
{X(n), n = 0,±1, . . .}, of length N = 2p (p ∈ N∗). Let M = 2s (s ∈ N∗)
with M � N and Γ(j) = E{X(n)X(n+j)} be the autocovariance function.
We consider the null hypothesis H0 that X(n), n = 0, · · · , N1, is a white
noise. Equivalently, in terms of the Walsh spectral density function Fλ),
the null hypothesis becomes:

H0 : F (λ) = Γ(0) ∀λ vs H1 : ∃λ′
, F (λ

′
) 6= Γ(0)

The analysis of Schizophrenic Patients’ Brain Functional Connectivity is
based on the test statistics which are proposed in this work.

References

Brairi, H., Medkour, T. (2020). Testing discrete-valued time series for whiteness.
Journal of Statistical Planning and Inference, 206, 43-56.

University of Science and Technology Houari Boumediene
Email address: brairih@gmail.com

University of Science and Technology Houari Boumediene
Email address: tmedkour@usthb.dz

1

472



A NEW THRESHOLD MODEL FOR FINANCIAL TIME

SERIES ANALYSIS

NADIA BOUSSAHA, FAYÇAL HAMDI, AND ABDERAOUF KHALFI

Abstract. In this communication, we introduce a new threshold model
to analyze the stochastic volatility of financial time series. Being in-
spired from the threshold stochastic volatility model proposed by Breidt
(1996), our model may explain better more nonlinear stylized facts ob-
served in financial assets namely asymmetry and leverage effect. Keep-
ing the piecewise-linear structure in the log-volatility as in Breidt (1996),
we introduce a new flexible regime-switching mechanism based on the
buffered process introduced in Li et al. (2015). This transition mecha-
nism avoids the sudden jump in the log-volatility imposed by the classi-
cal model and allows a smooth transition between regimes. We provide
a Sequential Monte Carlo method to estimate the model’s parameters.
We applied our model to fit the Honeywell International Inc (HON)
index.

2010 Mathematics Subject Classification. 62M10, 37M10, 91B84.

Keywords and phrases. stochastic volatility, threshold time series,
buffer zone .

1. Define the problem

Threshold models introduced in [5], has been adopted to reproduce asym-
metric behavior and to capture the leverage effect exhibited by financial
returns. The use of threshold models to explain asymmetric volatility has
been, firstly, known in the deterministic (ARCH/GARCH-type) volatility
modeling framework (see e.g, [7], [8]). This approach has been extended in
[2] to the stochastic volatility analysis area, by the definition of the Thresh-
old Stochastic Volatility model (TSV ). Based on Tong’s pioneering work,
Breidt’s model assumes that, according to whether the information good or
bad, the volatility dynamics follows a two-regime threshold model, where
the log-volatility in each regime is represented by a first order autoregres-
sive model and the transition between regimes is a function of lagged stock
returns signs. Although threshold models have been hugely successful, It
was pointed out that they have poor performance around the boundaries
between the different regimes. This is mainly due to the sudden change in
the probabilistic structure of the model, which may not be the case in the
real world [6]. In fact, empirical studies have shown that asset prices have
a particular volatility reaction for good and bad news [1]. Assuming the
threshold effect in the volatility and without loss of generality, for a two-
regime situation, there are some cases where the shift of regime may not
happen at the same threshold value. In fact, when the return on the price
of an asset exceeds a particular positive threshold rU , the market can affirm
the advent of good news, while the bad news is only confirmed when return

1
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crosses another negative threshold, rL. The interval (rL; rU ] serves therefore
as a buffer zone, no information comes in when the return falls within this
zone and volatility structure is also assumed to remain unchanged. It is
clear that this finding cannot be captured by the classical threshold model
since it considers only a single threshold parameter. This situation has been
discussed and investigated in the introductory paper untitled ”Hysteresis
autoregressive time series model” of [3] where a new more flexible regime
switching mechanism is defined. This mechanism is based on the replace-
ment of the single threshold parameter by the zone (rL; rU ] which is called
”Hysteresis” or ”Buffer” zone. This approach provides a rigorous defini-
tion of the regime indicator. This idea has already been adopted for the
deterministic volatility modeling (see e.g, [4], [9]).

In this communication, we introduce this approach in the SV modeling
context. By considering the same new flexible regime-switching mechanism,
we define a new threshold stochastic volatility model that we call Buffered
Stochastic Volatility (BSV ) model. We employ a Sequential Monte Carlo
method to provide a Maximum Likelihood estimate of the proposed model.
The performance of the proposed estimation method is discussed through a
simulation study and an application for fitting the Honeywell International
Inc (HON) index.
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AEROSOLS AGGREGATION MODELING BASED ON

NUMERICAL SIMULATION OF SMOLUCHOWSKI

EQUATIONS

DJILALI AMEUR, JOANNA DIB, AND SÉRÉNA DIB

Abstract. Atmospheric aerosols represent a complex dynamic mixture
of microscopic solid or liquid droplets particles suspended in atmosphere.
Atmospheric particles come from many different sources consisting of
both natural origins and/or anthropogenic activities. Aerosols influ-
ence the energy balance of the Earth. In fact, interaction procedure
between solar/terrestrial radiation fluxes and atmospheric aerosols play
a primary role in affecting the Earth’s climate by scattering light and
changing Earth’s reflectivity. Moreover, aerosols are of central impor-
tance for cloud formation. Hence, aerosols alter planetary albedo by
affecting cloudiness and global average temperature. The aim of this
work is to study the atmospheric aerosols coagulation process greatly
enhanced by the Van der Waals forces and monitored by the Brownian
motion. We analyse an approach for solving Smoluchowski’s coagulation
equation employing the Monte Carlo probabilistic method based on the
use of random numbers in repeated experiments. Additionally, several
numerical simulations have been implemented and evaluated regarding
their Central Processing Unit (CPU) times and their accuracy in terms
of mass concentrations. All our numerical tests show that the numerical
solutions calculated by MC algorithms converges to the exact solutions.

2010 Mathematics Subject Classification. 65C05, 65C10, 65C30,
65C35, 65C50, 34K50.

Keywords and phrases. Computational probability, Aerosols statis-
tical approach, Stochastic differential equations, Monte Carlo method.
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In this work, we deal with a stochastic control problem for a  

backward doubly stochastic differential equation governed by a  

standard Wiener motion and a fractional Brownian motion with  

Hurst parameter greater than half. We explicit the adjoint  

process and derive the stochastic maximum principle   

using two major approaches: the first one is the Doss-Sussmann 

transformation and the second one is the Malliavin calculus. 

The set of the control domain is convex. The criterion to be 

minimized is in the general form, with initial cost. 
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ASYMPTOTIC ANALYSIS OF A KERNEL ESTIMATOR OF TREND
FUNCTION FOR STOCHASTIC DIFFERENTIAL EQUATION WITH

ADDITIVE A SMALL WEIGHTED FRACTIONAL BROWNIAN
MOTION

ABDELMALIK KEDDI, FETHI MADANI, AND AMINA ANGELIKA BOUCHENTOUF

Abstract. In this work, we consider the problem of nonparametric esti-
mation of trend function for stochastic differential equations driven by
a small weighted fractional Brownian motion (weighted-fBm). Under
some general conditions, the consistent uniform, the rate of convergence
as well as the asymptotic normality of our estimator are established.

2010 Mathematics Subject Classification. 62M09, 60G15

Keywords and phrases. Weighted fractional Brownian motion; trend
function; kernel estimator; stochastic differential equations; nonpara-
metric estimation.

1. Introduction

In this work, we investigate the problem of estimating the trend function
St = S(xt) for process satisfying stochastic differential equations of the type

(1) dXt = S(Xt)dt + εdBa,bt , X0 = x0, 0 ≤ t ≤ T ,
where

{
Ba,bt , t ≥ 0

}
is a weighted fractional Brownian motion with known

parameters a and b, such that a > −1, 0 < b < 1, b < a+ 1 and a+ b > 0. We
estimate the unknown function S(xt) by a kernel estimator Ŝt and obtain
the asymptotic properties as ε −→ 0.

Using the method developed in [3]. Then, the kernel estimator of St is
given by

(2) Ŝt =
1
φε

∫ T

0
G

(
τ − t
φε

)
dXτ ,

where G(u) is a bounded function with finite support [A,B]

2. Main result

We suppose that the function S : R −→R satisfies the following assump-
tions:

(A1) There exists L > 0 such that

(3)
∣∣∣S(x)− S(y)

∣∣∣ ≤ L
∣∣∣x − y

∣∣∣ , 0 ≤ t ≤ T .
1
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(A2) There exists M > 0 such that

|S(x)| ≤M(1 + |x|), x ∈R, 0 ≤ t ≤ T .
(A3) Assume that the function S(x) is bounded by a constant C.
We suppose also that G(u) is a bounded function with finite support

[A,B] satisfying the following hypotheses

(H1) G(u) = 0 for u < A and u > B, and
∫ B

A
G(u)du = 1,

(H2)
∫ +∞

−∞
G2(u)du <∞,

(H3)
∫ +∞

−∞
u2(k+1)G2(u)du <∞,

(H4)
∫ +∞

−∞
|G(u)| 2

a+b+1 du <∞,
(H5) φε −→ 0 and ε2φ−1

ε −→ 0 as ε −→ 0.

(H6)
∫ +∞

−∞
ujG(u)du = 0 for j = 1,2, ..., k,

(H7)
∫ +∞

−∞
uk+1G(u)du <∞; and

∫ +∞

−∞
u2(k+2)G2(u)du <∞.

> Uniform convergence

Theorem 2.1. Suppose that the assumptions (A1)-(A3) and (H1)-(H5) hold
true. Then, for any 0 < c ≤ d < T , a > −1, 0 < b < 1, b < a+ 1, and a+ b > 0,
the estimator Ŝt is uniformly consistent, that is,

lim
ε−→0

sup
S(x)∈Σ0(L)

sup
c≤t≤d

ES(|Ŝt − S(xt)|2) = 0.

>The rate of convergence

Theorem 2.2. Suppose that a > −1, 0 < b < 1, b < a + 1, a + b > 0, and φε =
ε

2
2k−a−b+3 . Then, under the hypotheses (A1)-(A3) and (H1)-(H7), we have

limsup
ε−→0

sup
S(x)∈Σk(L)

sup
c≤t≤d

ES(|Ŝt − S(xt)|2)ε
−4(k+1)

2k−a−b+3 <∞.

> The asymptotic normality

Theorem 2.3. Suppose that a > −1, 0 < b < 1, b < a + 1, a + b > 0, and φε =
ε

2
2k−a−b+3 . Then, under the hypotheses (A1)-(A3) and (H1)-(H7), we have

ε
−2(k+1)

2k−a−b+3
(
Ŝt − S(xt)

) D−→N (m,σ2
a,b), as ε −→ 0,

where

m =
Sk+1(xt)
(k + 1)!

∫ +∞

−∞
G(u)uk+1du,

and

σ2
a,b = b

∫ +∞

−∞

∫ +∞

−∞
G(u)G(v)(u ∧ v)a(u ∨ v −u ∧ v)b−1dudv,
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ASYMPTOTIC PROPRIETES OF NON PARAMETRIC

RELATIVE REGRESSION ESTIMATOR FOR ASSOCIATED

AND RANDOMLY LEFT TRUNCATED DATA

HAMRANI FARIDA, GUESSOUM ZOHRA, OULD SAID ELIAS,
AND TATACHAK ABDELKADER

Abstract. Let Y be a real random variable of interest and X an Rd-
valued random vector of covariates. We want to estimate Y after ob-
serving X. There are several ways to estimate it and one of the most
popular is the regression method which modeled by the following con-
sideration: Y = m(X) + ε, where m is the unknown regression function
and ε is a random error variable.
Classicaly, the regression function m is estimated by using the mean
squared error as a loss function. However, this loss function is very sen-
sitive to outliers. One of the techniques we can use to overcome this
problem is to use alternative loss function based on the squared relative
error. Relative error estimation has been recently used in regression
analysis (see Park and Stefanski (1998), Jones et al.(2008)). This tech-
nique is useful in analyzing data with positive responses, such as life
times which we interest in this work. Another particularity of the life
times is that are often not observed completely. Censored and trunca-
tion are the most current forms of the incomplete data. In this work we
are interested in the left truncated data, where the observation (X,Y )
is interfered by another independent rv T such that all three random
quantities Y,X, and T are observable only if Y ≥ T . This model is origi-
nally appeared in astronomy (woodroofe (1985)), then extend to several
domains as economics, epidemiology, demographics, actuarial. When we
use the least square error as a loss function to determine the regression
function m, Ould Säıd and Lemdani (2006) built a kernel type estima-
tor of m(x) which take into account the truncation effect. Following the
same arguments, we define the kernel estimator of the truncated relative
error regression of m and we study its asymptotic proprieties. We give
also illustrations of the results on simulated data.

2010 Mathematics Subject Classification. xxxx, xxxx, xxxx.
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BERNSTEIN-FRECHET INEQUALITIES FOR NOD

RANDOM VARIABLES AND APPLICATION TO

AUTOREGRESSIVE PROCESS

CHEBBAB IKHLASSE

Abstract. In this paper, we establish exponential inequalities for NOD
random variables that allow use to create a confidence interval for the
parameter of the first order autoregressive process. Using these inequal-
ities, we show the almost complete convergence for the estimator of this
parameter.

2010 Mathematics Subject Classification. 60B, 60F05, 60F15,
60F17, 60G10.

Keywords and phrases. Autoregressive process, Convergence, Expo-
nential inequalities, NOD random variables.

1. Introduction

The autoregressive process takes an important part in predicting problems
leading to decision making. Let us consider the autoregressive process order
1 defined by

Yk = θYk−1 + ξk

Where θ is the autoregressive parameter and where (ξk)k is a sequence of
normally distributed random variables, with zero mean. Consider Yk−1 as
NOD output variables. We use the least sequares methode to estimate the
parameter θ.

Lehmann [3] introduced a simple and natural definition of negative de-
pendence: A sequence {Yi, 1 ≤ i ≤ n} of random variables is said to be
pairwise negative quadrant dependent (pairwise NQD) if for any real yi, yj
and i 6= j, P(Yi > yi, Yj > yj) ≤ P(Yi > yi)P(Yj > yj). The concept of
negatively orthant dependent random variables was introduced by Ebrahimi
and Ghosh [2] as follows.

Definition 1.1. The sequence {Yn, n ≥ 1} of random variables are said to
be lower negatively orthant dependent (LNOD), if for any n ≥ 1

P(Y1 ≤ y1, Y2 ≤ y2, ..., Yn ≤ yn) ≤
n∏

j=1

P (Yj ≤ yj).

for every y1, ..., yn ∈ R
The sequence {Yn, n ≥ 1} of random variables are said to be upper negatively
orthant dependent (UNOD), if for any n ≥ 1

1
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P(Y1 > y1, Y2 > y2, ..., Yn > yn) ≤
n∏

j=1

P (Yj > yj).

for every y1, ..., yn ∈ R

The sequence {Yn, n ≥ 1} of random variables are said to be negatively
orthant dependent (NOD) if {Yn, n ≥ 1} are both LNOD and UNOD.

2. Main results

Theorem 2.1. For any ε < 1
4 log 3 positive and for R rather large, we have

(1) P(
√
n|θn − θ| > R) ≤ 2 exp(−1

2R
2ε2A1) + 3−(n−1)/4 exp(nε)

Where A1 =
1

γ2L2
is a positive constant.

Corollary 2.2. The sequence of estimators (θn)n∈N converges almost com-
pletely to the parameter θ of the autoregressive process of order 1.

Corollary 2.3. The inequalities (1) give us the possibility to construct a
confidence interval for the parameter θ.
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   We propose a kernel nonparametric estimator of the regression 

function for incomplete data.  The incompleteness model studied here 

is the left truncated and right censored (LTRC) one. We suppose that 

the observations are independent and identically distributed (iid). A 

simulation study is carried out in order to show the performance of our 

estimator. 
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DECONVOLVING THE DISTRIBUTION FUNCTION FROM

ASSOCIATED DATA: THE ASYMPTOTIC NORMALITY.

BEN JRADA MOHAMMED ESSALIH AND DJABALLAH KHEDIDJA

Abstract. In reliability theory or survival analyses, it is common to
observe data that are not only contaminated but weakly dependent too.
The goal here is to discuss the problem of estimating the unknown cu-
mulative density function F (x) of X when only corrupted observations
Y = X + ε are present, where X and ε are independent unobservable
random variables and ε is a measurement error with a known distri-
bution. For a sequence of strictly stationary and positively associated
random variables and assuming that the tail of the characteristic func-
tion of ε behaves either as super smooth or ordinary smooth errors, we
obtain the asymptotic normality.

2010 Mathematics Subject Classification. 62G05, 60G10, 62G20.

Keywords and phrases. cumulative density function, Positively As-
sociated, Deconvolution, Asymptotic Normality.

1. Define the problem

We consider the problem of estimation from observations that are con-
taminated by additive noise {εi}ni=1. Due to the nature of the experimental
environment or the measuring tools, the random process {Xi}ni=1 is not avail-
able for direct observation. Instead of Xi, we observe the random variables
Yi given by

(1) Yi
M
= Xi + εi, i = 1, ..., n.

The focus is to estimate nonparametrically the unknown common cumu-
lative density function (c.d.f.) F (x) of a process {Xi}ni=1 which is assumed
to be strictly stationary and positively associated. In addition, we assume
that the density function (p.d.f.) f(.) of the process {Xi}ni=1 exists. Fur-
thermore, the noise process {εi}ni=1 consists of independent and identically
distributed (i.i.d.) random variables, and independent from {Xi}ni=1, with
known density function r(.). Thus the common probability density function
g(.) of the random variables Yi is given by:

(2) g(x) =

∫ +∞

−∞
f(x− t)r(t)dt.

Model (1) is called a convolution and the problem of estimating f with
this model occurs in various domains. This model has been studied in Ex-
perimental Sciences. For example, Biological Organisms, Communication
Theory, and Applied Physics.

The literature abounds of work devoted to the study of the p.d.f. in con-
volution problems. [4] proposed a consistent estimator for the density based
on grouped data for some cases of error density. [5] considered the estimation

1
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of the multivariate probability density functions under some structures of
dependence. [7] used the Moving Polynomial Regression (MPR) to smooth
the empirical distribution function estimator. [6] considered the asymptotic
uniform confidence bands.

The c.d.f. deconvolution has not attracted as many research. [8] devel-
oped the approach to examining the estimation of the c.d.f. and treated
its corresponding asymptotic normality in the case where the joint random
process {Xi, εi}ni=1 is stationary and satisfies the ρ-mixing condition and ful-
filling some additional assumptions. Furthermore, the contaminated noises
{εi}ni=1 are assumed to have a dependence structure and are either ordinary
smooth or super smooth. [9] studied the minimax complexity of this prob-
lem when the unknown distribution has a density belonging to the Sobolev
class and the error density is ordinary smooth. [10] considered the deconvo-
lution when the unknown distribution is modeled as a mixture of p known
distributions. [11] studied a consistent estimator of a distribution function
from observations contaminated with additive Gaussian errors. Fan (1991)
considered the estimate based on integration of the density deconvolution
estimator. [12] developed the estimation of the c.d.f. in the case where data
are corrupted by heteroscedastic errors.

We study the quadratic mean convergence and deduce the mean-square
convergence rate for the deconvolving cumulative density estimator under
various assumptions on the characteristic function φr of the measurement
error. The following two cases are generally distinguished:

• φr decays algebraically at infinity

|t|β |φr(t)| →|t|→+∞
β1 for some β > 0 and β1 > 0.

In this case, the error is called ordinary smooth.

• φr decays exponentially fast at infinity

β2e
−m|t|α |t|β ≤ |φr(t)| ≤ β3e−m|t|

α |t|β ,
for some positive constants α , m, real β, and positive constants β2
and β3.

This is called supersmooth error.
The parameter β is called the order of the noise density r (x). Actually, it

has a direct impact on the rate of convergence of the estimate Fn (x). Par-
ticular examples of supersmooth distribution are Normal, Mixture Normal,
Cauchy densities r(x). The ordinary smooth distribution covers in particular
the case of Gamma, Double Exponential, and Symmetric Gamma densities
r(x).

Next, it is of practical interest to show that the deconvolution difficulties
are heavily related to the smoothness of the error distribution. Indeed, super
smooth distributions are more difficult to deconvolve than ordinary smooth
distributions, see for example the proofs in [13].

The infinite random process {Xi}+∞i=1 is positively associated (PA for
short), or just associated, if every finite subcollection {Xi}ni=1, n ≥ 1 satisfies
the property given in the following definition.
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Definition 1. A finite family of random variables {Xi}ni=1 is said to be
positively associated if

Cov [Φ1(Xi, i ∈ A1),Φ2(Xj , j ∈ A2)] ≥ 0,

for every pair of disjoint subsets A1 and A2 of {1, 2, ..., n}, and Φl are
coordinatewise increasing functions and this covariance exists for l = 1, 2.

Definition 1, which was introduced by [1], includes several mixing process
classes. Note that associated processes have attracted a lot of research at-
tention since they arise in a variety of contexts. For instance, in Finance (see
[2]), and in Applied physics (see [3]), and even in Percolation theory. We
may also cite the homogeneous Markov chains as a direct example of the as-
sociation property and normal random vectors with nonnegative covariance
sequences.

It is worthy to note that, if the underlying process {Xi}ni=1 is associ-
ated, then the process {Yi}ni=1 involving the convolution model in (1) is a
corrupted-associated random process. Actually, from Property P2 of [1]
(mentioned later), the independence between the processes {Xi}ni=1 and
{εi}ni=1 ensures the association of the union {Xi}ni=1 ∪ {εi}ni=1. Fortunately,
all dealing here is with a strictly stationary process. In fact, and as men-
tioned above, {εi}ni=1 consists of i.i.d. rvs. Since {Xi}ni=1 are independent
from {εi}ni=1 , it is clear that {Yi = Xi + εi}ni=1 is a strictly stationary ran-
dom process.

References

[1] Esary et al., Association of random variables, with applications, The Annals of Math-
ematical Statistics, (1967)

[2] Jiazhu P., Tail dependence of random variables from ARCH and heavy-tailed bilinear
models, Sciences in China, (2002)

[3] Fortuin C M, Kasteleyn P W, Ginibre J., Correlation inequalities on some partially
ordered sets, Communications in Mathematical Physics, (1971)

[4] Zhang C H., Fourier methods for estimating mixing densities and distributions, Ann.
Statist., (190)

[5] Masry E., Strong consistency and rates for deconvolution of multivariate densities of
stationary processes, Stochast. Process. Appl., (1993)

[6] Fan J., Asymptotic normality for deconvolving kernel density estimators, Sankhya,
(1990)

[7] Lejeune M, Sarda P., Smooth estimators of distribution and density functions, Comp.
Stat. Data Anal., (1992)

[8] Ioannides, D. A. and Papanastassiou, D. P., Estimating the distribution function of
a stationary process involving measurement errors, Statistical inference for stochastic
processes, (2001)

[9] Dattner I, Goldenshluger A, Juditsky A., On deconvolution of distribution functions,
The Annals of Statistics, (2011)

[10] Cordy C B, Thomas D R., Deconvolution of a distribution function, Journal of the
American Statistical Association, (1997)

[11] Gaffey, William R., A consistent estimator of a component of a convolution, Institute
of Mathematical Statistics, (1959)

[12] Wang X, Fan Z, Wangc B., Estimating smooth distribution function in the presence
of heteroscedastic measurement errors, Comput. Stat. Data. Anal., (2010)

[13] Masry E., Deconvolving multivariate kernel density estimates from contaminated as-
sociated observations, IEEE Transactions on Information Theory, (2003)

489



4 BEN JRADA MOHAMMED ESSALIH AND DJABALLAH KHEDIDJA

University of Science and Technology Houari Boumediene Algeria
Email address: esslihm1@gmail.com

University of Science and Technology Houari Boumediene Algeria
Email address: khdjeddour@hotmail.com

490



DIFFUSION APPROXIMATION OF A FINITE-SOURCE

M/M/1 RETRIAL QUEUEING SYSTEM

S. MEZIANI AND T. KERNANE

Abstract. A single server retrial queue with finite number of sources
is simply described as a mathematical model. We establish a diffusion
approximation of the scaled number of requests in the orbit using the
convergence of the generator approach.

2010 Mathematics Subject Classification. 60K25, 68M20, 90B22.

Keywords and phrases. Convergence of the Generator Approach,
Diffusion Process, Finite-Source Retrial Queue, Infinitesimal Generator,
Scaled Number of Blocked Requests.

1. Define the problem

Diffusion approximation consists of scaling down the discret space-state
of a Markov process by a quantity that tends to infinity and then identify-
ing the resulting diffusion process, which is a Markov process defined on a
continuous space-state. In the paper [1], the author has demonstrated that
the virtuel waiting time process in in the M(t)/G/1/∞ queue with FIFO
discipline converges to a Brownian motion in heavy traffic. Whereas, in
[2],it is shown that the number of sources or retrials in an M/M/c retrial
queue is approximated by an Ornstein-Uhlenbeck process in a steady state.
In this work, we are going to show that the number of blocked requests in an
M/M/1/N retrial queue can be approximated by a certain diffusion process
under an asymptotic regime. As in [1] and [2], the diffusion approximation
is elaborated using the convergence of the generator approach (for details
see [3]) after the definition of the diffusion scaled process (see [4]).
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Abstract:   

In this study, we present an application of Artificial Neural Networks (ANNs) in the 

renewable energy domain. In particular, we focus on the Multi-Layer Perceptron (MLP) 

network, which has been the most widely used ANNs architectures in both the renewable 

energy and time series forecasting domains. We have developed an ANN model time series for 

the daily prediction of global solar radiation whit an automatic selection of the optimal 

architecture of the ANN model; depending on the training data. Thus, the stochastic 

optimization algorithm Adam (The Adaptive Moment Estimation Optimizer) has been adopted 

to adjust the training parameters. A thirty-nine years reanalysis data series between 1980 and 

2018 was used for training and implementation of the model, and validation was carried out 

with respect to the year 2019. The results of the error analysis obtained show that the model 

developed has a good performance in the line with the previous studies. Thus, we notice that 

the consideration of seasonality slightly improves the accuracy of the forecasts. The best-

chosen ANN model is identified on the basis of the minimum mean absolute error (MAE) and 

root mean square error (RMSE). In addition, this study confirms that the accuracy of ANN 

model predictions depends on the complete set of data used to build the network of the 

intended application. The ANN model developed is characterized by reasonable daily 

prediction accuracy, with a low RMSE of                 .  which verifies the accuracy 

and ability of the model to predict solar radiation in order to ensure an optimal management 

of solar energy farms, where meteorological data measurement facilities are not in place in 

Oran.  

 

Keywords: ANN, Multi-Layer Perceptron; ANN Time Series model; Solar Radiation; 

Daily Forecast. 

493



Abstract 
 
The paper deal with the robust nonparametric regression for a 
functional single index covariates when the response variables are 
missing at random (MAR), for both cases, without and with unknown 
scale parameter. We establish, the almost complete convergence rate 
of the proposed estimators. Some simulations study are drawing, and 
real data analysis are given to illustrate the higher predictive 
performances of our proposed method. 
 
Keywords {robust regression , functional single index covariate , 
almost complete convergence , missing data , scale parameter.} 
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ESTIMATION METHODS FOR PERIODIC INAR(1) MODEL

WITH GENERALIZED POISSON DISTRIBUTION

ROUFAIDA SOUAKRI AND MOHAMED BENTARZI

Abstract. This communication deals with the parameters estimation
problem of a Periodic Integer-valued Generalized Poisson AR (1) model
which has been shown to be useful to describe overdispersion and un-
derdispersion encountered in periodically correlated integer-valued time
series. Some probabilistic and statistical properties are established. In-
deed, the periodically correlated stationarity conditions, in the first and
the second moments are provided. Moreover, the structure of the peri-
odic autocovariance is obtained. The estimation problem is addressed
through the Yule-Walker (YW ), the Conditional Least Squares (CLS)
and the Conditional Likelihood (CML) methods. The performance of
these methods is done through an intensive simulation study.

2010 Mathematics Subject Classification. 62F12, 62M10

Keywords and phrases. Generalized Poisson distribution, periodi-
cally correlated integer-valued process, periodic integer-valued, autore-
gression PINAR model. Periodically stationarity conditions.

1. Define the problem

Integer-valued time series arise in many practical settings. Count series
are non-negative integers and are usually correlated over time. Many of
data sets are characterized by low counts, over dispersion, under dispersion,
ruling out normal approximation and they can not be well approximated by
continuous variables. Modeling and analyzing counts series remains one of
the most challenging and undeveloped areas of time series analysis, so it is
necessary to develop an appropriate modelling strategy.

One of the approaches developed is based on a random operation called
thinning operation capable of preserving the integer valued nature of the
variables, giving rise to the class of Integer valued Autoregressive, INAR,
models. In first, researchers use the Poisson distribution as an integral fea-
ture of the process. McKenzie (1985) and, independently, Al-Osh and Alzaid
(1987) introduced the first-order integer-valued autoregressive, INAR (1),
model based on the binomial thinning operator, Steutel and Van Harn(1979),
and dealt with discrete time stationary processes with Poisson marginal dis-
tributions, called Poisson INAR (1) process. Issues such as inference and
forecasting for Poisson time series models have been discussed.

In practice, however, the Poisson distribution is not always suitable for
modeling because it characterized by the property of equidispersion (i.e.,the
mean is equal to the variance), so if we have one observation underdispersed
or overdispersed (i.e.,the mean is smaller or greater than the variance), the
Poisson distribution should not be applied. In such cases, there are several

1
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alternative models have been proposed in the literature. Thus, Bourguinon
and al. (2018) proposed two new binomial thinning INAR (1) process with
Double Poisson (DP ) and Generalized Poisson (GP ) innovations, denoted
by INARDP (1) and INARGP (1) , respectively, for modeling non-negative
integer time series with equidispersion, underdispersion and overdispersion.

It is recognized nowadays, that many integer-valued time series encoun-
tered in various fields as the environmental, economic particularly financial
ones, exhibit a periodic feature, in their autocovariance structure (as exam-
ples Number of cases of campylobacterosis infections time series studied by
Ferland et al (2006), Monthly number of short-term unemployed people in
Penamacor County Portugal, studied by Monteiro et al (2010), Monthly
number counts claims of short-term disability benefits, studied by Bour-
guignon et al (2015) and independently by Zhu and Joe (2006) and Freeland
(1998)), that cannot be encountered by the standard integer-valued model-
ing. The periodic, in time, coefficient models are very adequat for modeling
these Periodically Correlated Processes, in the sense of Gladyshev (1963).

In this communication, we propose a first order Periodic Integer-Valued
Autoregressive PINAR (1) with Generalized Poisson marginal distribution,
our new model can fit the data with periodically correlated structure, and
handle the underdispersed, equidispersed and overdispersed situations. The
conditions of stationarity of the first and second order moments are estab-
lished. The periodic autocovariance structure of the proposed model is,
under these conditions, established. Moreover, the explicit forms of the
mean and the variance are driven. The performance of the three different
presented methods namely the Yule-Walker (YW ), the Conditional Least
Squares (CLS) and the Conditional Likelihood (CML) methods are stud-
ied via intensive simulation studies.
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Abstract 
 

We study the existence of an optimal control for systems governed 

by stochastic differential equations of mean-field type. In these 

equations, the drift and the diffusion coefficient depend not only 

on the state of the system, but also on the expectation of some 

function of the state. For nonlinear systems, we prove the 

existence of an optimal relaxed control, by using tightness 

techniques and Skorokhod selection theorem. In the case where 

the coefficients are linear maps and the cost functions are convex, 

we prove by using weak convergence techniques the existence of 

an optimal strict control, adapted to the initial filtration.      

Keywords: Mean-field stochastic differential equation; relaxed control; 

strict control; weak convergence; tightness. 
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FDA : LOCAL LINEAR MODE REGRESSION

CHAIMA HEBCHI

Abstract. This paper is devoted to study the asymptotic properties
of local linear mode regression function in iid setting and for functional
data.

2010 Mathematics Subject Classification. 62G05, 62G08, 62G20.
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1. Define the problem

In nonparametric statistics, many studies are carried out to give powerful
tools to model and study the relationship between the response variable.
The nonparametric mode regression function has long been a question of
great interest in a wide range of fields for instance in econometrics, biologie,
astronomy...
In most phenomenon, the observations of data have functional nature. In-
deed, the technology’s advance contributes by providing many studies in
different fields with modern and relevant measuring instruments. In other
side many statistical problems appear such “the strong correlation between
the variables, the ratio between the number of variables and the size of sam-
ple”(see [10] ). Therefore, the functional data analysis (FDA) appears to
model and treat such kind of data, for an updated of references, we can lead
the reader to the monographs by [17], [18], [3] and [10].
For more than decades, many papers relied on the kernel method to esti-
mate the nonparametric regression function (see : [19], [16] and [11]). Then,
[9] generalized the kernel regression estimator of Nadaraya-Watson famil-
iar function where this model was adopted in many studies to find more
asymptotic results such as : the k-nearest-neighbours (k-NN) estimator is
investigated by [4], convergence in L2 norm (see : [5]) which is generalized
in the α-mixing case (see [6]) and recently, [13] stated the uniform in band-
width for kernel regression estimator.
However, the previous literatures used the Nadaraya-Watson techniques as
estimation method which has some drawbacks, mainly, in the bias term.
Hence, in the functional data setup, the local linear method comes to gen-
eralize and ameliorate the kernel method. Actually, [1] proposed the first
local linear estimator model of the regression operator when the explanatory
variable takes values in a Hilbert space. When the regressors take values
in semi-metric space, [2] introduced another version of the local linear es-
timator of the regression operator. This last method has been extended to
estimate the conditional distribution and its derivatives ([7], [15], [8] and

1
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[14]). When the derivatives estimator of regression provide us about the be-
haviour of both regression shape and regression mode. Hence, in the sequel,
we attempt to give the uniform almost complete convergence of local mode
regression.

2. Model Framework and main results

We consider n pairs (Xi, Yi)i=1,...,n identically and independently dis-
tributed as (X,Y ), this last is valued in F × R, where F is a semi-metric
space equipped with a semi-metric d
The mode regression function θ on F is

θ(x) = sup
x∈F

m(x)

whereas, the mode regression estimator θ̂ is defined by

θ̂(x) = sup
x∈F

m̂(x)

where : m and m̂ are regression and regression estimator respectively. Obvi-
ously, mode regression has a relation with regression. So, to get the estimator
of local linear regression we minimize the following quantity :

(1) min
(a,b)∈R2

n∑

i=1

|Yi − a− bβ(Xi, x))|2K(h−1K δ(Xi, x))

where β(., .) and δ(., .) are two functions defined from F×F to R, such that:

∀ξ ∈ F , β(ξ, ξ) = 0, and d(., .) = |δ(., .)|.
K is Kernel and hK = hK,n is chosen as a sequence of positive real numbers.

our study aims to state the uniform almost complete convergence of θ̂ on
some subset SF of F such that

SF ⊂ ∪dnk=1B(xk, rn)

where xk ∈ F and rn (resp dn) is a sequence of positive real numbers.
We suppose that our estimator satisfies some conditions which are commonly
used in many studies of local linear method for functional data, we have :

Theorem 2.1. ( [12])

sup
x∈SF

|θ̂(x)− θ(x)| = O(hb) +Oa.co.

(√
ln dn
nφx(h)

)

the theoreme’s proof can be deduced directly from a Taylor development
of m̂(1)(θ̂(x)) around θ(x) also some technical lemmas.
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MX/M/1 QUEUEING SYSTEM WITH WAITING SERVER,

K-VARIANT VACATIONS AND IMPATIENT CUSTOMERS

INES ZIAD, AMINA ANGELIKA BOUCHENTOUF, AND ABDELHAK GUENDOUZI

Abstract. We consider an MX/M/1 queueing system with waiting
server, K-variant vacations, reneging, and retention of reneged cus-
tomers. We analyze the model using probability generating function
(PGF) method. Then, we derive various queueing system characteris-
tics.

2010 Mathematics Subject Classification. 60K25, 68M20, 90B22.

Keywords and phrases. Variant multiple vacations, impatient cus-
tomers, probability generating function.

1. Introduction

Vacation queueing models with customers impatience have been widely
studied due to their large applications in different areas including service
systems, communication systems, production and manufacturing systems,
and so on (e.g., [3], Ye et al. [4], Bouchentouf and Guendouzi [2]). In this
work, we consider an MX/M/1 queueing system at which customers arrive
in batches according to a Poisson process with rate λ. Let X denote the
batch size random variable of the arrival with probability mass function
P (X = l) = bl, l = 1, 2, .... The service time is assumed to be exponentially
distributed with parameter µ. The customers are served on FCFS discipline.
When the busy period is ended, the server waits a random period before tak-
ing a vacation, this waiting time is assumed to be exponentially distributed
with parameter η. When duration of the waiting server expires, the server
leaves for vacation. Then, at a vacation period termination, if it finds a cus-
tomer at the vacation completion instant, it comes back to the busy period,
otherwise, it takes a finite number, say K, of successive vacations. When
the K consecutive vacations are complete, the server returns to busy period
and depending on the arrival batch of customers, it stays idle or busy. The
period of a vacation follows an exponential distribution with parameter φ.
During vacation period, each incoming customer starts up an impatience
timer independently of the other customers in the system, assumed to be
exponentially distributed with parameter ξ. The impatient customers may
leave the system with probability α or retained in the system with proba-
bility α′ = 1− α. The inter-arrival times, batch sizes, waiting server times,
vacation times, service time, and impatience times are independent of each
other.

1
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2. The equilibrium state distribution

Let L(t) be the number of customers in the system and S(t) denote the
status of the server at time t, such that

S(t) =





j, when the server is taking the (j + 1)th vacation at time t,
j = 0,K − 1;

K, the server is in busy period at time t.

The bi-variate {(L(t);S(t)); t ≥ 0} represents two dimensional infinite
state continuous-time Markov chain with state space Ω = {(n, j) : n ≥
0, j = 0,K}.

Let Pn,j = lim
t→∞

P{L(t) = n, S(t) = j}, n ≥ 0, j = 0,K denote the system

state probabilities of the process {(L(t), S(t)), t ≥ 0}.
Theorem 2.1. If λE(X) < µ, then the steady-state-probabilities Pn,j are
given as

P.,j =
∞∑

n=0

Pn,j = Aj−1P0,0, j = 0,K − 1,

and

P.,K =

∞∑

n=0

Pn,K =
1

µ− λB′(1)

{
φλB′(1)

αξ + φ

1−AK
A(1−A)

+
µαξ

ηC

}
P0,0,

where

P0,0 =

{
µαξ

ηC(µ− λB′(1))
+

1−AK
A(1−A)

(
φλB′(1)

(µ− λB′(1))(αξ + φ)
+ 1

)}−1
,

such that

A =
φC

αξ
,

with

C =

∫ 1

0
e
λ
αξ
H(x)

(1− x)
φ
αξ
−1
dx, and H(z) =

∫ z

0

B(x)− 1

1− x dx,

where B(x) is the probability generating function of the batch arrival size
X, and B′(1) = E(X) is the first moment of random variable X.

3. System Performance measures

− The probability that the server is idle during busy period.

P0,K =
αξ

ηC
P0,0.

− The probability that the server is in vacation period.

Pv =

K−1∑

j=0

Aj−1P0,0 =
1−AK
A(1−A)

P0,0.
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− The probability that the server is serving customers during busy period.

Pb = 1− Pv − P0,K .

− The mean system size when the server is on vacation.

E[LV ] =
λB′(1)

αξ + φ

1−AK
A(1−A)

P0,0.

− The mean system size when the server is in busy period.

E[LK ] =

[
φλB′(1)

(2αξ + φ)(µ− λB′(1))
+
φ(2µ+ λB′′(1))

2(µ− λB′(1))2

]
E[LV ]

+
µλ(2B′(1) +B′′(1))

2(µ− λB′(1))2
P0,K .

− The mean system size.

E[L] = E[LV ] + E[LK ].

− The mean queue length.

E[Lq] = E[L]−
[
1−

K∑

j=0

P0,j

]
.

− The mean number of customers served per unit time.

Ns = µPb.

− The average rate of reneging.

Ra = αξE[LV ].

− The average rate of retention of impatient customers.

Re = (1− α)ξE[LV ].
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NON PARAMETRIC ESTIMATION WITH K NEAREST

NEIGHBORS METHOD

NADJET BELLATRACH AND WAHIBA BOUABSA

Abstract. It is well known that the nonparametric estimation of the
regression function is highly sensitive to the presence of even a small
proportion of things that aren’t part of the main group in the data.
To solve the problem of typical observations when the covariates of the
nonparametric component are functional, the robust estimates for the
regression parameter and regression operator are introduced.

The main propose of the paper is to think about data-driven methods
of selecting the number of neighbors in order to make the proposed pro-
cesses fully automatic. We use the k Nearest Neighbors procedure (kNN)
to construct the kernel estimator of the proposed strong and healthy
model. Under some regularity conditions, We mention the results of
consistency for kNN functional estimators, for kNN functional estima-
tors, which are uniform in the number of neighbors (UINN). What’s
more, a simulation study and an empirical application to a real data
analysis of octane gasoline predictions are carried out to illustrate the
higher predictive performances and the usefulness of the KNN approach.

2010 Mathematics Subject Classification. 62H12, 62G07; Sec-
ondary 62G35, 62G20.

Keywords and phrases. Functional data analysis; quantile regression;
NN method; uniform nearest neighbor (UNN) consistency; functional
nonparametric statistics; almost complete convergence rate.

1. Estimation Model

In this article, the purpose is to evaluate the impact of the functional
variable X on the real variable Y using the robust estimation of the regres-
sion function

Let us introduce n pairs of random variables (Xi;Yi)i≥1, that we assume
drawn from the pair (X,Y ),, which is valued in F × R , where F is a
semi-metric space equipped with a semi-metric d.The relationship between
X and Y is given by Y = r(X) + ε, where ε represents an independent
random variable of X with a symmetric distribution. The robust methode
was defined, for any loss function ρ(., .) on IR, as the unique minimizer with
respect to (w.r.t.) the component t in the model Γx(t) = E [ρ(Y, t)/X = x].
The theoretical estimator of this model is defined by

θx = arg min
t∈R

Γx(t)(1)

1
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According to Eq. (1), the best approximation of Y given X is based on the

estimation of θx denoted by θ̂x, given by θ̂x = arg mintεR Γ̂x(t) where:

Γ̂x(t) =

∑n
i=1 k

(
h−1k d(x,Xi)

)
ρ(Yi, t)∑n

i=1 k
(
h−1k d(x,Xi)

)(2)

with k is a kernel function and hk = min
{
h ∈ R+ such that

∑n
i=1 IB(x,h)(Xi) = k

}

with is given as a sequence of integers.

1.1. Main results. To establish the almost complete convergence of θ̂x uni-
formly in the numbers of neighbors k ∈ (k1,n, k2,n), we need the following
conditions and notations:
(A1) for all r > 0,P(X ∈ B(x, r)) = φx(r) > 0 such that, for all s ∈
(0, 1),lim

r→0

φx(sr)

φx(r)
= τx(s) <∞

(A2) The function Γ is such that:

(i) The function Γx(.) is of class C2 on [θx − δ, θx + δ] , δ > 0
(ii) ∀t ∈ [θx − δ, θx + δ] ,∀(x1, x2) ∈ Nx×Nx, |Γx1(t)− Γx2(t)| ≤ Cdb(x1, x2),

where Nx is a fixed neighborhood of x.
(iii) For each fixed t ∈ [θx − δ, θx + δ] the function Γ.(t) is continuous at

x.

(A3) The function ρ is a strictly convex, continuous and differentiable w.r.t.

the variable t, and its derivative, ψ(y, t) =
∂ρ(y, t)

∂t
, fulfills E

[
ψ(y, t)|2

]
<

C <∞ and E [ψ(y, t)|p] < C <∞, p > 1.
(A4) The kernel function k is supported within (0, 1/2) and the derivative
function of k is continuous on (0, 1/2) such that

0 < CI 0.1
2

(.) ≤ k(.) ≤ C
′I 0.1

2 (.) and k(1/2)−
∫ 1

2
0 k

′
(s)ds > 0

where IA denotes the indicator function of the set A.
(A5) Let define the class κ of functions by κ =

{
. 7→ k(γ−1d(x, .)), γ > 0

}

which is a pointwise measurable class4 such that supQ
∫ 1
0

√
1 + logN (ε‖F‖Q,2)dε <

∞, where the supremum is taken over all probability measures Q on the
space F with Q(F2) <∞ and F is the envelope function5 of the set K.
(A6) The sequence of numbers (k1,n) verifies

φ−1x

(
k2,n
n

)
→ 0 and

logn

min(nφ−1x

(
k2,n
n

)
, k1,n)

C or/and C ′ denotes a generic positive constant. In the following theorem,
we present the consistency result.

Theorem 1.1. Assume that conditions (A1)-(A6) are satisfied, then thetax
exists and is unique almost surely for all larger value of n . Furthermore, if
Γ

′′
x(θx) 6= 0, we have

supk1,n≤k≤k2,n

∣∣∣θ̂x − θx
∣∣∣ = O

(
φ−1x

(
k2,n
n

)min(k1,k2))
+Oa.co

(√
log(n)

k1,n

)
.
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NONPARAMETRIC CONDITIONAL DENSITY FUNCTION

ESTIMATION FOR RANDOMLY CENSORED DATA

IMANE BOUAZZA AND FATIMA BENZIADI

Abstract. We employ in this paper a nonparametric estimator of the
conditional density function in the framework of independent as well as
α−mixing data case when the variable of interest is subject to right-
censorship, by using both the classical and recursive methods. [5] and
[6] establish first the uniform strong consistency rates on a compact
and compare the mean squared errors of theses two kernel estimators.
Some simulations are carried out to confirm that the resulting recursive
estimator performs better than the non-recursive ones.

2010 Mathematics Subject Classification. 62G05, 62G07, 62G08,
62G20, 62H12.

Keywords and phrases. Conditional density function, Kernel estima-
tor, Recursive kernel estimation, Censored data, Kaplan-Meier estima-
tor, Uniform almost sure convergence.

1. Introduction

Much recent work has been carried out for the nonparametric estima-
tion of the conditional models in the context of censored data, both in a
theoretical framework and application, let us cite, among many others [4],
[5], [6] and [8]. These models play a crucial role in nonparametric predic-
tion. This is what make the method of studying the estimators expanded
and many statisticians tend to use the recursive methods because of its many
benefits. The computational advantage of recursive estimators on their non-
recursive versions is obvious: their update, from a sample of size n to one of
size n+1, can be computed instantly and does not require extensive storage
of data.
Thus, to make the paper more organized and clear, we will present first
some background of censored data. Let T1, T2, . . . , Tn be strictly stationary,
non-negative survival times with continuous distribution function F admit-
ting a density f. Then, assuming that C1, C2, . . . , Cn is a sequence of i.i.d.
right censoring times, and let G denote the unknown cumulative distribution
function of C, which is estimated by [3] and defined as follows

Gn(t) = 1−Gn(t) =





0 ; t ≥ Y(n)
n∏

k=1

(
1−

1−∆(k)

n− k + 1

)I(Y(k)≤t)
; t < Y(n)

where Y(1) < Y(2) < · · · < Y(n) are the order statistics of (Yk)k∈{1,...,n} and
∆(k) is the corresponding concomitant of Y(k).

1
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We will also define respectively the support right endpoints τF and τG of
the survival functions F and G as

τF := sup{t ∈ R : F (t) > 0} <∞ and τG := sup{t ∈ R : G(t) > 0}
and such that τF < τG with G(τF ) > 0.

2. Conditional Density Estimators

Consider in the same probability space (Ω,F ,P), n pairs of random
variables (Xk, Tk) that we assume drawn from the pair (X,T ) which is valued
in Rd×R. The problem of this paper is to propose a nonparametric estimate
of the conditional probability density function (c.p.d.f.) involved of Y given
X = x when the response variables Yk are rightly censored. The variables
{(Xk, Tk), k ≥ 1} and {Ck, k ≥ 1} are assumed to be independent. Thus, in
the right censoring model, the observed data are the triplet (Xk, Yk,∆k), k =
1, . . . , n, with

Yk = min{Tk, Ck} and ∆k = I[Tk≤Ck], 1 ≤ k ≤ n,
where IA denotes the indicator function of the set A. For x ∈ Rd, we

supposed that the conditional probability distribution of T given X = x
exists and given by

∀t ∈ R, F (t/x) = P[T ≤ t/X = x].

Now, we are in position to define in both cases the estimators of the
desired model based on the randomly right-censorship, such that for all
x ∈ Rd

φx(t) =
∂F

∂t
(t/x)

2.1. Classical Case. Classically, the conditional density function φx(t)
is estimated by [4] where the step kernel is replaced by a smooth pdf L.
Here, (Xn, Tn)n≥1 is a stationary α-mixing sequence of rvs, with coefficient
α(n) which satisfies for some ν > d+ 4, α(n) = O(n−ν). Thus,

φ̃xn(t) =

n∑

k=1

∆kG
−1
n (Yk)K

(
x−Xk

hn,K

)
L

(
t− Yk
hn,L

)

hn,L

n∑

k=1

K

(
x−Xk

hn,K

) :=
g̃n(x, t)

γn(x)

where

g̃n(x, t) :=
1

nhdn,Khn,L

n∑

k=1

∆kG
−1
n (Yk)K

(
x−Xk

hn,K

)
L

(
t− Yk
hn,L

)
.

With

• g(·, ·) the joint probability density function assumed to be bounded
and continuously differentiable up to order 3 and γ(·) the marginal
density one assumed to be twice continuously differentiable;
• The functions K and L are kernels assumed to be Lipschitzian in

this paper;
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• hn is a sequence of positive real numbers tending to 0 as n→∞ and
satisfies

nh
(ν+d+4)(d+1)/(ν−d−4)
n

log(ν+1)/(ν−d−4) n log
6/(ν−d−4)
2 n

→∞ as n→∞.

Throughout the rest of the paper, let C and Ω be two compact sets of Rd
and R respectively.

Theorem 2.1. [5] Under certain classical assumptions on the bandwidth
and regularity conditions on the kernels, the joint and marginal densities,
we will have
(1)

sup
x∈C

sup
t∈Ω

∣∣∣φ̃xn(t)− φx(t)
∣∣∣ = O

{
max

((
log n

nhd+1
n

)1/2

, h2
n

)}
a.s. as n −→∞.

Now, we are in position to give the second estimate

2.2. Recursive Case. The recursive version of the previous kernel esti-
mator is proposed by [6] and defined for (x, y) ∈ Rd × R as

φ̂xn(t) =

n∑

k=1

h
−(d+1)
k ∆kG

−1
n (Yk)K

(
x−Xk

hk

)
L

(
t− Yk
hk

)

n∑

k=1

h−dk K

(
x−Xk

hk

) :=
ĝn(x, t)

γn(x)

where

ĝn(x, t) :=
1

n

n∑

k=1

1

hd+1
k

∆kG
−1
n (Yk)K

(
x−Xk

h
k

)
L

(
t− Yk
hk

)
;

and

γn(x) :=
1

n

n∑

k=1

1

hdk
K

(
x−Xk

h
k

)
.

Note that, the following result is obtained when (Xn, Tn)n≥1 is a station-
ary independent and identically distributed sequence of rvs.

Theorem 2.2. [6] Under standard conditions on regularity of functions and
let h−n = inf

k=1,...,n
hk and h+

n = sup
k=1,...,n

hk. We have

(2) sup
x∈C

sup
t∈Ω

∣∣∣φ̂xn(t)− φx(t)
∣∣∣ = O



max



(

log n

nh
−(d+1)
n

)1/2

, h+2
n





 a.s.

3. Simulation Study

To compare the finite-sample performance of both methods (the re-
cursive and the classical kernel ones), we are in position to consider the
following model: Y = r(X) + ε with r(X) = exp(X − 0.2) (for more exam-
ples of models, the reader can refer to the original articles [5] and [6]), where
the random variables X and ε are i.i.d. and follow respectively the normal
distribution N (0, 1) and N (0, σ). Thus, [6] choose three censoring type of
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τ=(10, 40, 70) in order to control the effect of this factor in the efficiency
of both estimators, by fixing the sample size n = 200 for each case. Then,
the MSE results under the randomly right-censorship are given in the table
below

τ MSE(KERNEL) MSE(RECURSIVE)

10 0.79 0.29
40 1.32 1.18
70 2.17 2.65

Censored Data MSE-Results.

4. Conclusion

In this summary, we provided two type of estimators of the conditional
density function. We considered the case where the data are i.i.d. and
α−mixing, we dealt with the strong almost sure convergence of these esti-
mators, as well as a simple numerical study. On one hand, there is no big
difference in the calculations and the assumptions except for certain con-
ditions concerning the bandwidths h and the inequalities adapted to each
case. The necessary proofs and discussion of these results are detailed in the
papers of [5] and [6].
On the other hand, a simulation comparison between the two estimators
showed clearly that the recursive method is slightly better than the classi-
cal kernel one. However, the recursive estimator is strongly affected by the
presence of a high censoring rate and to be more objective we deal here only
with the i.i.d. case, but the same still true for the other case (α-mixing).
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nal de la société française de statistique, 151(2), 19-46, (2010).

512



NONPARAMETRIC CONDITIONAL DENSITY FUNCTION ESTIMATION FOR RANDOMLY CENSORED DATA5

Affiliation 1, Laboratory of Stochastic Models, Statistics and Applica-
tions, University of Saida-Dr. Moulay Tahar, P.O. Box 138, EN-NASR, 20000,
Algeria

E-mail address: imen.bouazza@univ-saida.dz, imanebouazza94@gmail.com

Affiliation 2, Laboratory of Stochastic Models, Statistics and Applica-
tions, University of Saida-Dr. Moulay Tahar, P.O. Box 138, EN-NASR, 20000,
Algeria

E-mail address: benziadi.fatima@univ-saida.dz, proba stat@yahoo.fr

513



NONPARAMETRIC RELATIVE ERROR ESTIMATION OF

THE REGRESSION FUNCTION FOR TWICE CENSORED

DATA AND UNDER α− MIXING CONDITION.

BENZAMOUCHE SABRINA1, OULD SAÏD ELIAS2, AND SADKI OURIDA1

Abstract. In this paper, we are interested in the nonparametric esti-
mation of the regression function for twice censored data under strong
mixing condition. First, we built a kernel estimator for the error relative
regression function when the r.v. of interest is twice censored and satis-
fies the α− mixing property. Then, we study its asymptotic behavior.

2010 Mathematics Subject Classification. 62G05, 62G20.

Keywords and phrases. Kernel estimate, Patilea-Rolin estimator,
Relative regression error, Strong mixing condition, Twice-censored data,
Uniform almost sure consistency.

1. Define the problem

Consider the regression model Y = r(X)+ε, where Y is a random variable
(rv) of interest, X is a random covariate such that the error ε has zero mean
and is uncorrelated with X. In the classical regression model, the purpose
is to find a function r∗(x) which achieves the minimum of the mean squared
error

E
[
(Y − r(x))2 |X

]
,(1)

however, this loss function which is considered as a measure of the prediction
performance may be unadapted to some situations. So, in the following,
we circumvent the limitations of this classical regression by estimating the
operator of regression with respect to the minimization of the following mean
squared relative error (MSRE), for Y > 0

min
r

E

[(
(Y − r(x))

Y

)2

|X
]
.(2)

In many practical applications, it happens that one is not able to observe a
subject’s entire r.v. of interest. The most current forms of such incomplete
data are censorship and truncation. [1] and [2] studied the consistency
and asymptotic normality of the kernel estimator of the classical regression
function for right censored data in the i.i.d. case and strong mixing case
respectivly.
The model studied here in the twice censored introduced by [6]. The classical
regression for this model was considered by [5] and [3]. The relative error
regression has been studied by [4].
Our goal is to built a new kernel estimator of the mean squared relative error
prediction for the regression function under twice censored for α− mixing

1
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data. Then, we establish the uniform almost sure consistency. Our results
are illustrated by some simulations.
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NON-PARAMETRIC DENSITY ESTIMATION FOR

POSITIVE AND CENSORED DATA: APPLICATION TO

LOG-NORMAL KERNEL.

SARAH GHETTAB AND ZOHRA GUESSOUM

Abstract. The density function is an important problem for inference
with censored data. We propose a new type of kernel estimator for den-
sity function that performs well at the boundary, when the variable of
interest is positive (e.g. lifetime) and right censored. Following Chaubey
[?] who introduced and studied a new type of asymmetric kernels density
estimator, for complete data. We give the rate of almost sure uniform
convergence of this estimator for censored data. We compare by simula-
tion the performance of the Log-normal kernel density estimator , with
the symmetric kernel, performed by Blum and Susarla (1980)[?].
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Keywords and phrases. Asymmetric kernel, Censored data , Strong
uniform consistency.
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Normalité asymptotique de l’estimateur du coefficients d’un
AR[1] sous dependance faible

ZEMOUL S.I. (1),BERKOUN Y. (2)

Résumé :
On s’intéresse quelques propriètés asymptotiques de l’estimateur des moindres carrés du
paramètre d’un processus autoregressif d’ordre un (AR(1)) lorsque les innovations sont
faiblement dépendantes dans un certain sens. Le résultat est basé sur certains théorèmes
relatifs aux variables négativement associées (NA) et faiblement dépendantes.

2010 Mathematics Subject Classification. Primary 60G70,Secondary 60G10.

Mots-clès :Variables associées, processus linéaire, dépendance faible, modèle autoregres-
sif, estimateur des moindres carrés.

Introduction
Soit (Xt)t un processus autoregressif d’ordre un défini par :

Xt = ρXt−1 + εt, t = 1, 2, . . . , 0 < |ρ| ≤ 1, (1.1)

où (εt)t est une suite de variables aléatoires négativement associées indépendantes de X0

et qui sont négativement associées (NA). Notons par ρ̂, l’estimateur des moindres carrés
ordinaires de ρ donné par

ρ̂ =

∑n
t=1XtXt−1∑n
t=1X

2
t−1

, (1.2)

On s’intéresse aux propriétès asymptotiques de ρ̂ lorsque les innovations sont NA. Sous
certaines conditions que l’on spécifiera dans la suite, la normalité asymptotique et la consis-
tance sont obtenues.

1-Définitions et résultats préliminaires

Dans cette section, on donne certaines définitions et quelques résultas qui vont nous
servir pour démontrer nos résultats.
Définition 1.1 Une famille des variables aléatoires (X1, . . . , Xn) est dite négativement
associée (NA), si pour tous sous-ensembles disjoints A1 et A2 de (1, ..., n) on a

Cov(f1(Xi, i ∈ A1), f2(Xj, j ∈ A2)) ≤ 0

où f1 et f2 sont deux fonctions croissantes par rapport à chaque composante. Une suite
(Xn)n de variables aléatoires est dite NA si toute sous-famille finie de variables aléatoires
est NA.
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Définition 1.2(voir [1])
Un processus (Xt)t est dit (θ,£, ψ)- faiblement dependent s’il existe une suite (θr)r,

r ∈ N décroissante vers 0 quand r tend vers l’infini et une fonction ψ définie sur £n×£m×N2

tels que pour (h, k) ∈ £u ×£v et (u, v) ∈ N2

Cov(g(Xi1 , ..., Xin), h(Xj1 , ..., Xjm)) ≤ ψ(g, h, n,m)θr

Pour tout (i1, ..., in) et (j1, ..., jm) avec i1 < .... < in ≤ in + r ≤ j1 < .... < jm.
£n est la classe des fonctions Lipschitziennes réelles, bornées par 1 et définies sur Rn

(n ∈ N∗) et £ =
⋃∞
n=1 £n. i.e.,

£n = (g ∈ L∞(Rn) Lip(g) <∞, ‖g‖∞ ≤ 1)

Lipf représente le module de continuité de Lipschitz de f défini par

Lip(f) = sup
x 6=y

|f(x)− f(y)|
‖x− y‖1

avec ‖x− y‖1 =
∑n

i=1 |xi − yi|.

Pour diverses spécifications de la fonction ψ, on obtient les dépendance suivantes
- κ-dépendance avec ψ(n,m, a, b) = nmLip(g)Lip(h) notée κ(r)
- θ-dépendance avec ψ(n,m, a, b) = mb
- η-dépendance avec ψ(n,m, a, b) = nLip(g) +mLip(h)
-λ-dépendance avec ψ(n,m, a, b) = nmLip(p)Lip(g) + nLip(g) +mLip(h)
-ζ-dépendance avec ψ(n,m, a, b) = min(n,m)Lip(g)Lip(h)

- Exemples
- Si (Xn)n est une suite de variables aléatoires associeés et centrées, alors (Xn)n est ζ-
faiblement dépendant avec θr = supi

∑
j:|i−j|≥r Cov(Xi, Xj)

Les processus linéaires avec des innovations indépendantes sont sous certaines condi-
tions η-faiblement dépendants (voir [2]).Le lemme suivant nous donne la dépendance faible
d’un processus linéaire sous innovations associées.

Lemme 1. (voir [3]) Soit Xt =
∑

i≥0 ciεt−i un processus linéaire où la suite (εt)t est

formée de variables aléatoires associées. On suppose que E(|εt|2+δ) < ∞, δ > 0 et que
Σj≥1|cj| <∞. Alors, le processus (Xt)t est ζ-faiblement dépendant.

Lemme 2. Soit (Xn)n une suite de variables aléatoires NA
telles que E(|Xt|β) <∞ pour 1 ≤ β < 2, alors

1

n
1
β

n∑

k=1

(Xk − E(Xk))
p.s−→ 0

2
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Lemme 3. Soit (Xn)n une suite de variables aléatoires NA telles que E(Xn) = 0, ∀n et
E(|Xn|pq) < ∞ pour 1 ≤ P ≤ 2, q ≥ 1.Posons Sn =

∑n
i=1Xi et notons (an)n une suite

positive de réels croissante vers l’infini telle que

∞∑

n=1

a−pn (apn − apn−1)−q+1E(|Xn|pq) <∞

alors Sn
n

p.s−→ 0

II- Résultas
Remarquons d’abord que

ρ̂ =

∑n
t=1XtXt−1/n∑n
t=1X

2
t−1/n

=
Un
Vn

(2.1)

Pour montrer la normalité asymptotique, il suffit de montrer que Un converge en loi et que
Vn converge en probabilité et d’utiliser le théorème de Slutsky.

2.1 Consitance de ρ̂ sous NA

Théorème 1. (voir [4]) Soit (Xt)t defini par (1.1) et on suppose que le processus des
innovations (εt)t est faiblemement stationnaire vérifiant

E(εn) = 0, E(ε2n) = σ2
1 <∞, 0 < σ2

1+2
+∞∑

i=1

E(ε1ε1+i) <∞, supnE(|εn|2+δ) <∞, pour δ > 0

(2.2)
Pour n tendant vers l’infini, on a

a) 1
n

∑n
i=1 ε

2
i

p.s−→ σ2
1

b) 1
n

∑n
i=1 εiXi−1

p.s−→∑+∞
i=1 ρ

iE(ε1ε1+i)

c) 1
n

∑n
i=1X

2
i−1

p.s−→ 1
1−ρ2 (ρ2 + 2

∑+∞
i=1 ρ

iE(ε1ε1+i))

d)

ρ̂ =

∑n
t=1XtXt−1∑n
t=1X

2
t−1

p.s−→ ρ+
(1− ρ2)∑+∞

i=1 ρ
i−1E(ε1ε1+i)

σ2
1 + 2

∑+∞
i=1 ρ

iE(ε1ε1+i)

Remarques
1- Il en découle de ce qui précède, que pour 0 < ρ < 1, l’estimateur ρ̂ ≤ ρ et donc n’est
pas forcément consistent. La consistence est oblenue que ssi E(ε1ε1+i) = 0 ∀i ≥ 1

3
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2- Si le processus (εt)t est strictement stationnaire, la condition supnE(|εn|2+δ) <∞ n’est
pas nécessaire.

2.2 Normalité asymptotique de ρ̂ sous NA
Pour obtenir la normalité asymptotique de ρ̂ sous innovations associées, nous avons besoin
des hypothèses suivantes.
- H1 : E(|εn|2(q+δ)) <∞, q > 2, et que les hypothèses du lemme 1 sont satisfaites.

- H2 : θr = O(r−m), m > q(q+δ)
2δ

, Σrr
δθ

1−s/2
r <∞, s > 2

Posons Xi,h = (Xi−h, . . . , Xi)
′
, ΓX(h) = E(X0Xh,h), ΣX = (Σj|cj|)4Σε

Σε est la matrice d’ordre (h+ l, k + 1) où l’élément

σl+1,k+1 = limnCov(
1√
n

n∑

i=1

εiεi+l,
1√
n

n∑

j=1

εjεj+k) =
+∞∑

i=−∞
Cov(ε0εl, εiεi+k)

Théorème 2. Sous les hypothèses H1 et H2, alors

1√
n

n∑

i=1

(XiXi+h,h − ΓX(h)
d−→ N(0,ΣX)

Remarque
La normalité asymptotique de ρ̂ se déduit du théorème 2 (voir[5]) et du c du théorème 1.

Lemme 4. (voir [3])
Soit (Yi)i∈Z un processus stationnaire et H : R(Z) → R satisfait la condition suivante :
Notons par R(Z) =

⋃
I>0

{
z ∈ R(Z)

}
/zi = 0, |i| > I} , l’ensemble finis des suites de nombres

réels .On considère H : R(Z) −→ R tel que si x, y ∈ R(Z) cöıncident pour tous les indices
sauf un , soit disant s ∈ Z,alors

|H(x)−H(y)| 6 bs((‖ z ‖)l ∨ 1)|xs − ys|

ou z ∈ R(Z) est définit par zs = 0 et zi = xi = yi si i 6= s .Ici ‖ x ‖= supi∈Z |xi|
pour certains l > 0 et certaines bj ≥ 0 tel que

∑
j |j|bj <∞.

Supposons qu’une paire de nombres réels (m,m′) avec E|Y0|m′ < ∞ tel que m � 1 et
m′ ≥ (l + 1)m.Alors :
• le processus Xn = H(Yn−i, i ∈ Z) est bien définit dans Lm : c’est un processus

strictement stationnaire
• Si le processus d’entrée (Yi, i ∈ Z) est λ-faiblement dépendent ( les coefficients de

dépendance faible sont notés par λy(r)), alors Xn est faiblement dépendants et il existe une
constante c > 0 tel que

4
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λ(k) = c inf
r≤[k/2]


∑

|j|≥r
|j|bj + (2r + 1)2λY (k − 2r)

m′−1−l
m′−1+l
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ON FRACTIONAL AUTOREGRESSIVE MODEL OF ORDER 1 WITH A
PERIODIC COEFFICIENT

NESRINE BENAKLEF (1) KARIMA BELAIDE (2)

Abstract. This paper deals with the effect of introducing a periodic coefficient on FAR(1)
model, we present some probabilistic properties and in order to come out with the final con-
clusions on the autocovariance function’s behaviour, we consider a simulation study.
2010 Subject Classification.91B70
Keywords and phrases. Periodic coefficient, periodically correlated, periodic functions, short
memory, long memory.

Define the problem

This work consist of introducing a periodic coefficient in the FAR (1) defined by the following
form

(1 − aL)dXt = εt
with

● L is lag operator.● ∣a∣ ≤ 1● εt; t ∈ Z is a white noise, sequence of independent random variable identically distributed
with zero mean and finite variance.● d is an unknown parameter not necessary integer.

This model was introduced by Gonçalves (1987) and subsequently studied by Serroukh (1996).
We tackle the question related to the study and the modelling of cyclic phenomena, the model
of interest is given as follow

(1 − atL)dXt = εt
where at it is assumed to be periodic with period p ∈ N; for all t ∈ Z,∃i = {0, ..., p − 1},m ∈ Z.
And we preserve all the same conditions on the other parameters
We show that our model is causal and invertible under a sufficient condition.
The present topic is interested in a certain probabilistic properties and in the asymptotic be-
haviour of the periodic auto-covariance functions. In the end, we compared the results found
with those of the original model through a simulation study.

1

522



2 NESRINE BENAKLEF (1) KARIMA BELAIDE (2)

References

[1] Abramowitz, M., Stegun, I. Handbook of mathematical functions with formulas, graphs,
and mathematical tables. New York: Dover Publications, pp.887889. (1965).

[2] Boshnakov, G.N.. Peridically correlated processes: some properties and recursions. (1994).
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ON FRACTIONAL AUTOREGRESSIVE PROCESS OF

ORDER 1 WITH STRONG MIXING ERRORS.

DJILLALI SEBA AND KARIMA BELAIDE

Abstract. This work is devoted to the study of the behavior of frac-
tional autoregressive model with strong mixing errors, we establish prob-
abilistic properties: auto-covariance and auto-correlation and its asymp-
totic behavior under geometrical α−mixing assumption, In order to mea-
sure the performance of the theoretical results we conduct a simulation
study.

2010 Mathematics Subject Classification. 91B70.

Keywords and phrases. Long memory, fractional autoregressive pro-
cess, dependence, α−mixing, autocorrelation.

1. Define the problem

In our work we consider the following model:

(1) (1− aL)dXt = εt

L is lag operator, d, a are constants, εt are assumed to be strong mixing.
our model is invertible when:

|a| < 1 or |a| = ±1 |d| < 1

2

The model 1 was introduced by Gonçalves (1987)[1] and studied by Serroukh
(1996) [4] in the case of independent errors.
In the present work we generalized these results when the errors are α−mixing;
we deal with geometrical case, therefore we use Cramer conditions in calcu-
lus.
In our study we treat the probabilistic behavior of the auto-covariance, au-
tocorrelation functions and their approximation formulas, it exhibits the
effect of the parameters d,a and the strong mixing errors on the decay of
the functions which allows us to know if the model is long memory or short
memory process.
Due to the behavior of the autocorrelation function we have two cases.

• When a is close to 1 the autocorrelation function decreases hyper-
bolically.
• When a is distant then 1, close to 0 the the autocorrelation function

has a fast decay.

We can also say that the strong mixing assumption affect the behavior of
the autocorrelation, and when d is bigger the decay is slower.

1
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ON GENERALIZED QUASI LINDLEY DISTRIBUTION:

GOODNESS OF FIT TESTS

SIDAHMED BENCHIHA AND AMER IBRAHIM AL-OMARI

Abstract. In this article, several goodness of fit tests for the gener-
alized quasi Lindley distribution are suggested based on the commonly
used simple random sampling (SRS) and ranked set sampling (RSS)
methods. These tests includes Kolmogorov-Smirnov test, Anderson-
Darling test, Cramer-von Mises test, and Zhang test. The power of the
tests and the critical values are obtained based on SRS and RSS schemas
for various alternatives. A comparison study is performed to study the
goodness of fit tests based on RSS relative to its counterparts in SRS
based on the same number of measured units. An application of real
data set is given for illustration. The results indicate that the RSS tests
performs well as compared to the SRS.

2010 Mathematics Subject Classification. xxxx, xxxx, xxxx.

Keywords and phrases. goodness of fit tests, maximum likelihood
estimation, power of test, ranked set sampling, significance level.

1. Define the problem

Ranked Set Sampling (RSS) method was introduced by McIntyre (1952)
as an alternative method for collecting data to Simple Random Sampling
(SRS). It was proposed to improving precision in estimation of a population
mean. The RSS strategy can be described as follow:

(1) select a simple random sample of size h2 from the desired population.
Randomly partition it into h sets of each size h. h is named the set
size.

(2) order each set of size h from smallest to largest.
(3) Obtain the ith order statistic from the ith set. (for i = 1, 2, ..., h).
(4) Repeat the steps (1)–(3), r times (cycles), to get a ranked set sample

of size M = rm.

The resulted sample is denoted as {X[i]j , i = 1, . . . , h; j = 1, 2, . . . , r}
where X[i]j is the ith largest unit in a set of size h in the jth cycle.
A new RSS design was proposed such as double ranked set by Al-Saleh and
Al-Kadiri (2000), median ranked set by Muttlak (1997), neoteric ranked
set sampling by Zamanzade and Al-Omari (2016), extreme ranked set sam-
pling by Samawi et al (1996), L ranked set by Al-Nasser (2007). For more
about RSS, you can see Al-Omari and Bouza (2014), Al-Hadhrami and Al-
Omari (2014), Haq et al (2015), Santiago et al (2016), Haq et al (2016).
In the literature, some authors apply the goodness of fit based on entropy
and empirical distribution function using RSS design such as Al-Omari and
Haq (2012) for the inverse Gaussian distribution, Al-Omari and Zamanzade
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(2016) for Rayleigh distribution, Al-Omari and Haq (2016) tests for the in-
verse Gaussian and Laplace distributions using pair ranked set sampling,
Al-Omari and Zamanzade (2017) for Laplace distribution. For more de-
tails on goodness of fit and entropy you can see Al-Omari (2014), Al-Omari
(2015), Al-Omari (2016),Al-Omari and Zamanzade (2018),Ebrahimi et al
(1994),Van Es (1992). in this work, we give some goodness of fit test using
SRS and RSS design for Generalized Quasi Lindley distribution (GQLD)
proposed by Benchiha and Al-Omari(2020).

2. Generalized Quasi Lindley distribution

Generalized Quasi Lindley distribution (GQLD) is propose by Benchiha.
S and Al-Omari. A (2020). The GQLD is a sum of two independent quasi
Lindley distributed random variables. Let X follows a GQLD with param-
eters θ and ξ then the probability density function (pdf) of X is given by
(1)

gGQLD(x;ψ, ξ) =
ξ2
(
ψ2x3

6 + ξψx2 + ξ2x
)

e−ψx

(ξ + 1)2
; x ≥ 0, ξ > −1, ψ ≥ 0.

and its cumulative distribution function is defined as:

(2)

GGQLD(x;ψ, ξ ) = 1−

(
ψ3x3 + 3 (2ξ + 1)ψ2x2 + 6 (ξ + 1)2 (ψx+ 1)

)
e−ψx

6 (ξ + 1)2
.

The first two moments of X are:

(3) E(X) =
6
(
ξ2 + 1

)
+ 6ξ + 6

3 (ξ + 1)2 ψ
,

(4) E(X2) =
6 (ξ + 1)2 + 2 (6ξ + 5) + 4

(ξ + 1)2 ψ2
,

Therefore, the variance of the GQLD distribution is given by:

(5) V (X) = E(X2)− (E(X))2 =
2
(
ξ2 + 4ξ + 2

)

(ξ + 1)2 ψ2
.

The corresponding reliability and hazard functions of the GQLD distri-
bution are given, respectively by:

(6)

RGQLD(x;ψ, ξ) =

(
ψ3x3 + 3 (2ξ + 1)ψ2x2 + 6 (ξ + 1)2 ψx+ 6 (ξ + 1)2

)
e−ψx

6 (ξ + 1)2
;x > 0, ξ > −1, ψ > 0,

(7) HGQLD(x;ψ, ξ) =
6ψ2

(
ψ2x3

6 + ξψx2 + ξ2x
)

ψ3x3 + 3 (2ξ + 1)ψ2x2 + 6 (ξ + 1)2 ψx+ 6 (ξ + 1)2
.

The reversed hazard rate and odds functions for the GQLD distribution,
respectively, are defined as
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(8)

RHGQLD(x;ψ, ξ) =
ψ2x

(
ψ2x2 + 6ξψx+ 6ξ2

)

6 (ξ + 1)2 eψx − ψx
(
ψx (ψx+ 6ξ + 3) + 6 (ξ + 1)2

)
− 6 (ξ + 1)2

.

and

(9)

OGQLD(x;ψ, ξ) =
6 (ξ + 1)2 eψx

ψ3x3 + 3 (2ξ + 1)ψ2x2 + 6 (ξ + 1)2 ψx+ 6 (ξ + 1)2
− 1.

3. Test statistics

In this section, we will discuss the suggested goodness of fit tests based
on SRS and RSS methods.

3.1. Using SRS. Let X1, X2, . . . , Xm be a random sample from GQLD
and let ψ̂SRS and ξ̂SRS be the maximum likelihood estimators of ψ and ξ,
respectively, and let f0(.;ψ, ξ) be the probability distribution function of
GQLD and F0(.;ψ, ξ) be the cumulative distribution function of GQLD. we
consider the following test statistics:

• The Kullback-Leibler distance (Kullback and Leibler, 1951) between
g(x) and g0(x;ψ, ξ) is defined as

KL(g, g0) =

∫ ∞

−∞
g(x) log

[
g(x)

g0(x;ψ, ξ)

]
dx,

= −H(g)−
∫ ∞

−∞
g(x) log [g0(x;ψ, ξ)] .

Where H(g) is the entropy defined by Shanon (1948) as

H(g) = −
∫ ∞

−∞
g(x) log(g(x))dx,

and estimated by Vasicek (1976) by:

HVtm =
1

m

m∑

i=1

log
[m

2t
(x(i+t) − x(i−t))

]
,

where t is integer less then m/2 known as window size and x(i) =
x(m) if i > m and x(i) = x(1) if i < 1. This estimator converges in

probability to H(g) as m, t→∞ and t
m → 0. Hence, the Kullback-

Leibler test is given by Song (2002) by:

KLtm = −HVtm −
1

m

m∑

i=1

log
[
g0(xi, ψ̂SRS , ξ̂SRS)

]

where the distribution of KLtm is free of ψ and ξ.
• The Kolmogorov-Smirnov test statistics Kolmogorov (1933) and Smirnov

(1933):
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KS = max

{
max
1≤i≤m

[
i

m
−G0 (x(i), ψ̂SRS , ξ̂SRS)

]
, max
1≤i≤m

[
G0(x(i), ψ̂SRS , ξ̂SRS)− i− 1

m

]}

• The Anderson-Darling test statistics Anderson and Darling (1954):

A2 = −2

m∑

i=1

{(
i− 1

2

)
log
[
G0(x(i), ψ̂SRS , ξ̂SRS)

]
+

(
m− i+

1

2

)
log
[
1−G0(x(i), ψ̂SRS , ξ̂SRS)

]}
−m.

• The Cramer-von Mises test statistics Cramér (1928) and von Mises(1928):

W 2 =
m∑

i=1

[
G0(x(i), ψ̂SRS , ξ̂SRS)− 2i− 1

2m

]2
+

1

12m

• The Zhang (2002) test statistics:

ZK = max
1≤i≤m





(
i− 1

2

)
log

[
i− 1

2

mG0(x(i), ψ̂SRS , ξ̂SRS)

]
+

(
m− i+

1

2

)
log


 m− i− 1

2

m
[
1−G0(x(i), ψ̂SRS , ξ̂SRS)

]







ZA = −
m∑

i=1





log
[
G0(x(i), ψ̂SRS , ξ̂SRS)

]

m− i+ 1
2

+
log
[
1−G0(x(i), ψ̂SRS , ξ̂SRS)

]

i− 1
2



 ,

ZC =

m∑

i=1


log



G0(x(i), ψ̂SRS , ξ̂SRS)−1 − 1

(m− 1
2
)

(i− 3
4
)−1







2

4. Using RSS

Let {X[i]j , i = 1, 2, . . . , h; j = 1, 2, . . . , r} be a ranked set sample of size
M = hr from the GQLD and z(1) ≤ z(2) ≤ . . . ≤ z(M) its corresponding

ordered values and ψ̂RSS and ξ̂RSS be the maximum likelihood estimators
of ψ and ξ, respectively, using RSS methods. Thus, above goodness of tests
for RSS are:

• The test based on Kullback-Leibler distance is defined as

KLRSStm = −HVtm −
1

M

M∑

i=1

log
[
g0(zi, ψ̂RSS , ξ̂RSS)

]

• The Kolmogorov-Smirnov test statistics:

KS = max

{
max

1≤i≤M

[
i

M
−G0 (z(i), ψ̂RSS , ξ̂RSS)

]
, max
1≤i≤M

[
G0(z(i), ψ̂RSS , ξ̂RSS)− i− 1

M

]}

• The Anderson-Darling test statistics:

A2 = −2

M∑

i=1

{(
i− 1

2

)
log
[
G0(z(i), ψ̂RSS , ξ̂RSS)

]
+

(
M − i+

1

2

)
log
[
1−G0(z(i), ψ̂RSS , ξ̂RSS)

]}
−M.

• The Cramer-von Mises test statistics:

W 2 =
M∑

i=1

[
G0(z(i), ψ̂RSS , ξ̂RSS)− 2i− 1

2M

]2
+

1

12M
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• The Zhang (2002) test statistics:

ZK = max
1≤i≤M





(
i− 1

2

)
log

[
i− 1

2

MG0(z(i), ψ̂RSS , ξ̂RSS)

]
+

(
M − i+

1

2

)
log


 M − i− 1

2

M
[
1−G0(z(i), ψ̂RSS , ξ̂RSS)

]







ZA = −
M∑

i=1





log
[
G0(z(i), ψ̂RSS , ξ̂RSS)

]

M − i+ 1
2

+
log
[
1−G0(z(i), ψ̂RSS , ξ̂RSS)

]

i− 1
2



 ,

ZC =
M∑

i=1


log



G0(z(i), ψ̂RSS , ξ̂RSS)−1 − 1

(M− 1
2
)

(i− 3
4
)−1







2

where HV RSS
tm =

1

M

M∑

i=1

log

[
M

2t
(z(i+t) − z(i−t))

]
, G0(z(i), ψ, ξ) is the dis-

tribution function of GQLD distribution.

5. Simulation study

In this section, we investigate the performance of the power of the pro-
posed goodness of fit test by using a Monte Carlo study. the study is based
on 100,000 samples generated from the GQLD with scale parameter 1 and
shape parameter 1 with different sample size using SRS and RSS design. the
powers of tests based on KLtm and KLRSStm depend on the window size t.
The problem of choosing the optimal values of t which maximizes the powers
subject to m is still open in the field of entropy estimation. Therefore, in
our simulations, we have used Grzegorzewski and Wieczorkowski (1999)’s
heuristics formula for choosing t as: t = [

√
m+ 0.5].

5.1. Critical values. Tables 1 present the critical values of the tests for
the GQLD in RSS design for γ = 0.01. We take m from 2 to 9 and the set
size h from 2 to 5.

5.2. Power comparison. In order to compare the powers of goodness of
fit tests in SRS and RSS designs, we have considered twelve following dis-
tributions as alternative distributions:

• the Lindley distribution with parameter 1.
• the Lindley distribution with parameter 3.
• the quasi Lindley distribution with scale parameter 1 and shape

parameter 1.
• the quasi Lindley distribution with scale parameter 1 and shape

parameter 2.
• the quasi Lindley distribution with scale parameter 3 and shape

parameter 1.
• the Exponential distribution with mean 1.
• the log-logistic distribution with scale parameter 2 and shape pa-

rameter 1.
• the Weibull distribution with scale parameter 1 and shape parameter

2.
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• the Weibull distribution with scale parameter 2 and shape parameter
5.
• the power Lindley distribution with scale parameter 3 and shape

parameter 3.
• the Uniform distribution on (0,1).
• the generalized Rayleigh distribution with scale parameter 1 and

shape parameter 2.

Since the above tests statistic are location and scale invariant, the powers
of these tests do not depend on the unknown parameters of GQLD. Tables
2 present the estimated powers, respectively, for M = 10 for γ = 0.05 using
SRS and RSS methods. In RSS scheme, the value of h (set size) is taken to
be 2 and 5, so we can observe the effect of increasing sample size while set
size is fixed, and the effect of increasing set size while sample is fixed.
Remarks: Based on simulation results it can be observed that:

• The suggested RSS goodness-of-fit tests are more powerful than their
SRS counterparts for all cases considered in this study. As an ex-
ample considered the case when M = 10, h = 2 the quasi Lindley
distribution with parameters(1,3) as an alternative the power val-
ues of the tests KS, A2, W 2 based on RSS are 0.112, 0.382, 0.132
compared to 0.090, 0.270, 0.099 using RSS, respectively.
• The power of the goodness of fit tests increase as the set size k in-

crease. As illustration, when N=20 for the Exponential distribution
observe that ZK = 0.799, ZA = 0.827 and ZC = 0.878 for h = 2 and
for h = 5 ZK = 0.969, ZA = 0.978 and ZC = 0.970.
• The power of the goodness of fit tests increase in the sample size. As

an example, based on RSS with h = 5 for the Lindley distribution
(1) , the power values of the Cramer-von Mises test are 0.343, 0.810,
0.998, respectively with M = 10, 20, 40.
• In most cases, the large power values are when the alternatives are

power Lindley distribution (3,3) and generalized Rayleigh distribu-
tion (1,1).
• the power values of the suggested goodness-of-fit tests depend on

the distribution parameters for the same test and sample size. As
an example when m = 20 and h = 2 the power of the Anderson-
Darling test are 0.777, 0.789, 0.714 for quasi Lindley distribution
with parameters (1,1), (1,2), (3,1), respectively.

6. Real data example

In this section, we show the useful of our proposed RSS-goodness of fit by a
real data example which present the survival times (in days) of 72 guinea pigs
infected with virulent tubercle bacilli, observed and reported by Bjerkedal
(1960), previously studied by Afify et al (2016). We present in Table 3 Akaike
information criterion (AIC) introduced by Akaike (1974), Baysian informa-
tion criterion (BIC) proposed by Schwarz (1978), HannanQuinn Informa-
tion Criterion (HQIC) suggested by Hannan and Quinn (1979), Consistent
Akaike Information Criterion (CAIC) by Bozdogan (1987), KS distance and
its coreesponding p-value.
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m k KL KS A2 W 2 ZK ZA ZC
2 2 2.290 0.573 18.995 0.319 2.017 4.528 13.900
2 3 1.676 0.477 40.109 0.311 2.436 4.278 18.141
2 4 1.339 0.410 69.032 0.297 2.664 4.101 19.710
2 5 1.138 0.359 105.460 0.280 2.770 3.958 20.963
3 2 1.363 0.499 41.284 0.358 2.618 4.379 17.251
3 3 0.982 0.406 88.292 0.340 2.977 4.108 20.630
3 4 0.783 0.347 152.853 0.321 3.093 3.936 22.114
3 5 0.660 0.300 234.643 0.292 3.162 3.810 22.431
4 2 1.099 0.446 71.878 0.382 3.000 4.245 19.698
4 3 0.801 0.361 155.261 0.366 3.369 3.999 22.520
4 4 0.644 0.302 269.224 0.330 3.402 3.830 23.599
4 5 0.546 0.260 412.653 0.288 3.379 3.719 24.108
5 2 0.937 0.408 110.830 0.399 3.277 4.133 21.073
5 3 0.686 0.328 240.371 0.377 3.567 3.906 24.122
5 4 0.555 0.272 417.146 0.334 3.598 3.756 24.814
5 5 0.479 0.234 640.590 0.288 3.548 3.660 25.030
6 2 0.818 0.380 158.162 0.421 3.544 4.061 22.533
6 3 0.609 0.302 343.864 0.390 3.742 3.838 24.843
6 4 0.495 0.248 595.812 0.327 3.744 3.700 25.503
6 5 0.431 0.214 918.307 0.286 3.695 3.614 25.881
7 2 0.695 0.358 213.650 0.435 3.755 3.994 23.693
7 3 0.502 0.281 464.991 0.395 3.852 3.778 25.319
7 4 0.404 0.230 806.901 0.326 3.847 3.654 26.148
7 5 0.342 0.199 1246.402 0.285 3.819 3.580 26.380
8 2 0.626 0.335 277.230 0.446 3.845 3.932 24.501
8 3 0.456 0.265 603.429 0.395 4.026 3.734 26.141
8 4 0.371 0.216 1049.537 0.325 3.967 3.623 26.534
8 5 0.316 0.186 1624.186 0.285 3.885 3.552 26.586
9 2 0.575 0.321 349.609 0.465 4.035 3.890 25.458
9 3 0.421 0.249 759.824 0.392 4.091 3.693 26.713
9 4 0.341 0.204 1325.100 0.325 4.019 3.595 27.388
9 5 0.296 0.175 2051.360 0.281 4.025 3.532 27.425
Table 1. Critical values of different tests of GQLD distri-
bution for different values of (m,h) in RSS design, at signif-
icance level γ = 0.01.

It is clear from table 3 that the GQLD present a good fit to the data set.
Hence we apply our proposed goodness of fit on a ranked set sample from
the data of size M = 10 and set size h = 5. The sampled values are:

0.72, 1.63, 2.22, 1.71, 5.55, 0.10, 0.77, 1.53, 1.72, 4.32.

The estimated parameters using maximum likelihood method are ψ̂ =
1.259 and ξ̂ = 0.671, the values of all the test statistics are computed and
given in Table 4. By comparing these values with the corresponding critical
values, we observe that the null hypothesis that the data follow a WGQLD
is not rejected by KL and ZC at significance level of γ = 0.05.
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Sampling Alternative distribution Test Statistics
scheme KL KS A2 W 2 ZK ZA ZC

Lindley (1) 0.124 0.091 0.286 0.101 0.267 0.291 0.362
Lindley (3) 0.161 0.111 0.336 0.123 0.327 0.360 0.431

Quasi Lindley (1,1) 0.125 0.092 0.287 0.100 0.270 0.293 0.363
Quasi Lindley (1,2) 0.154 0.085 0.323 0.093 0.310 0.349 0.428
Quasi Lindley (3,1) 0.117 0.090 0.270 0.099 0.258 0.282 0.347

Exponential (1) 0.186 0.084 0.356 0.092 0.349 0.402 0.491
SRS Log-Logistic (2,1) 0.134 0.150 0.233 0.179 0.267 0.293 0.399

Weibul (1,2) 0.183 0.074 0.337 0.080 0.335 0.391 0.479
Weibul (2,5) 0.090 0.050 0.038 0.029 0.074 0.085 0.095

Power Lindley (3,3) 0.814 0.907 0.982 0.980 0.873 0.921 0.915
Uniform (0,1) 0.340 0.407 0.615 0.482 0.456 0.329 0.346

Generalized Rayleigh (1,2) 0.759 0.880 0.970 0.969 0.846 0.930 0.911
Lindley (1) 0.164 0.124 0.422 0.148 0.378 0.387 0.452
Lindley (3) 0.190 0.113 0.411 0.133 0.391 0.420 0.480

Quasi Lindley (1,1) 0.163 0.125 0.420 0.148 0.378 0.387 0.451
Quasi Lindley (1,2) 0.207 0.111 0.457 0.136 0.426 0.450 0.520
Quasi Lindley (3,1) 0.153 0.112 0.382 0.132 0.346 0.359 0.420

Exponential (1) 0.253 0.105 0.494 0.132 0.478 0.516 0.590
RSS Log-Logistic (2,1) 0.181 0.161 0.310 0.198 0.384 0.404 0.489

(k =2) Weibul (1,2) 0.247 0.097 0.470 0.120 0.460 0.501 0.575
Weibul (2,5) 0.117 0.135 0.124 0.124 0.147 0.195 0.165

Power Lindley (3,3) 0.802 0.934 0.994 0.994 0.865 0.910 0.896
Uniform (0,1) 0.327 0.481 0.725 0.590 0.481 0.312 0.306

Generalized Rayleigh (1,2) 0.742 0.910 0.989 0.988 0.838 0.923 0.895
Lindley (1) 0.266 0.266 0.840 0.343 0.631 0.631 0.600
Lindley (3) 0.271 0.167 0.625 0.222 0.553 0.572 0.569

Quasi Lindley (1,1) 0.267 0.266 0.838 0.346 0.633 0.628 0.600
Quasi Lindley (1,2) 0.340 0.241 0.856 0.322 0.687 0.702 0.676
Quasi Lindley (3,1) 0.240 0.232 0.742 0.300 0.572 0.577 0.555

Exponential (1) 0.416 0.222 0.873 0.304 0.739 0.762 0.742
RSS Log-Logistic (2,1) 0.296 0.223 0.761 0.295 0.594 0.626 0.615

(k =5) Weibul (1,2) 0.411 0.213 0.854 0.294 0.728 0.751 0.732
Weibul (2,5) 0.188 0.394 0.746 0.660 0.340 0.458 0.339

Power Lindley (3,3) 0.864 0.991 1.000 1.000 0.942 0.954 0.933
Uniform (0,1) 0.361 0.722 0.952 0.878 0.636 0.372 0.304

Generalized Rayleigh (1,2) 0.799 0.983 1.000 1.000 0.923 0.961 0.933
Table 2. Power estimates of different goodness of fit tests
in SRS and RSS designs for M = 10 and γ=0.05.

Table 3. AIC, AICc, BIC, HQIC,K-S distance and p-value
for data set.

AIC AICc BIC HQIC K-S p-value
209.5955 209.7694 214.1488 211.4082 0.092806 0.564624
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KL KS A2 W 2 ZK ZA ZC
0.452 0.358 106.363 0.276 1.966 3.824 15.719

Table 4. Computing values of different test statistics in RSS.

7. Conclusion

In this paper, we developed goodness of fit test for GQLD using SRS and
RSS methods. A simulation study was conducted to evaluate the power of
the suggested goodness of fit tests. it is found that test based on RSS are
more powerful than their based on SRS counterparts.
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ON ROBUST ESTIMATION FOR INCOMPLETE AND

DEPENDENT DATA : SOME SIMULATIONS

GHELIEM ASMA AND GUESSOUM ZOHRA

Abstract. In this contribution we define the M-estimator of the re-
gression function for associated and left-truncated data. Via a large
simulations and through the influence function we illustrate that the
M-estimator is more robust than the Nadaraya-Watson type estimator.

Keywords and phrases. M-estimator, truncated data, Associated
data, outliers values , robust estimator , heavy-tailed error distribution,
influence function.

1. Definition of the estimator

Let (Xk, Yk), 1 ≤ k ≤ N be a sequence of associated random vector ,
where X is a random vector of covariates, taking its values in Rd with
(df) V and continuous density v and Y is a real random variable (rv) of
interest with distribution function (df) F and T is the truncation variable
with continuous df G, defined on the same probability space (Ω, F,P). We
assume that T and (X, Y) are independent.
Under random left-truncation model (RLTM), the lifetime Y and T are
observable only when Y ≥ T , and n ≤ N . Let µ =: P(Y ≥ T ) be the
probability to observe Y.

Under RLTM, we denote by m(x)(robust regression) the implicit solution
with respect to (w.r.t) s of

H(x, s) :=
1

µ
E[ψ(Y1 − s)|X1 = x)]v(x) = 0

ψ(.) is a bounded function.
The M-estimator of m(x), denoted by m̂n(x), is defined by the implicit

solution w.r.t. s of

Ĥn(x, s) :=
1

nhdn

n∑

i=1

1

Gn(Yi)
Kd

(
x−Xi

hn

)
ψ(Yi − s) = 0,

where: Kd is a kernel function on Rd and hn is a sequence of positive
real numbers which goes to zero as n goes to infinity and Gn(x) is the well
known product limit estimator of G(x), proposed by Lynden-Bell (1971).

2. Simulation

A large simulation study is carried out to comfort the good behavior of the
M-estimator. We show that the proposed estimator performs better than
the Nadaraya-Watson estimator first, by looking at their proximity to the

1
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true regression function in dimension one and in dimension two. Thereafter
and to highlight the robustness of our estimator, we consider a regression
model with a heavy-tailed error distribution and we compare the global mean
square error of the two estimators. Next, we investigate the behavior of the
two estimators in the presence of outliers using the influence function. We
show that the M-estimator is much more robust to the presence of outliers.

References

[1] Lynden-Bell D. (1971) A method of allowing for known observational selection in
small samples applied to 3CR quasars. Monthly Notices Royal Astronomy Society 155
95–118.

[2] Wang, J.F. and Liang, H.Y. (2012). Asymptotic properties for an M-estimator of
the regression function with truncation and dependent data. J. Korean Stat. Soc. 41
351–367.

Lab. MSTD, Faculty of Mathematics, USTHB, Po. Box 32, El-Alia 16111
Algiers,Algeria,

E-mail address: agheliem@usthb.dz

Lab. MSTD, Faculty of Mathematics, USTHB, Po. Box 32, El-Alia 16111
Algiers, Algeria,

E-mail address: zguessoum@usthb.dz

537



ON THE ESTIMATION OF MARKOV-SWITCHING

PERIODIC GARCH MODEL

FAYÇAL HAMDI AND CHAHRAZED LELLOU

Abstract. In this work, we will focus on the estimation of the markov-
switching periodic GARCH model, which is a GARCH process with
time-varying parameters governed by a hidden markov chain and a pe-
riodicity structure. This model is more flexible and it allows capturing
stylized facts like heavy tails, asymmetry and volatility clustering. We
propose a maximum likelihood procedure based on the collapsing proce-
dure proposed previously in the literature. We perform also a simulation
study and an application to the Algerian exchange rate.

2010 Mathematics Subject Classification. 62M10, 62M05, 65C35

Keywords and phrases. Markov switching GARCH model, Periodic-
ity, Path dependence, Collapsing procedure, Maximum likelihood, Ex-
change rates.

1. Define the problem

Modelling volatility has received much interest from researchers since the
introduction of the ARCH model by Engle (1982) and its generalization
by Bollerslev (1986). In fact, these models represent powerful tools in the
study, forecast and analysis of financial and macroeconomic phenomenon
since they capture many stylized facts observed in their data, like heavy-
tailed marginal distributions, asymmetry and volatility clustering. However,
other patterns as multimodality and regime changes remain uncaptured by
these models, hence the necessity to extend them to other classes like the
mixture models and the Markov-Switching models.

The Markov-Switching (in short MS) models proposed firstly by Hamilton
(1989) have attracted many researchers and practitioners due to their flex-
ibility. Indeed, Cai (1994) and Hamilton and Susmel (1994) proposed MS-
ARCH. Gray (1996) proposed a simplified version of MS-GARCH. Thereby,
numerous studies have been implemented, devoted to MS-GARCH (see e.g.
Klaassen, 2002; Haas et al., 2004; francq and Zaköian, 2005).

On the other hand, many economic and financial time series display sea-
sonal variation that should be taken into account. Many researchers em-
phasized the need to combine periodicity with the GARCH-type models
discussed above (see e.g. Bollerslev and Ghysels, 1996; Franses and Paap,
2000). Such observations have led to the development of some mixture mod-
els that explicitly incorporate this periodicity in parameter structure. Ben-
tarzi and Hamdi (2008) introduced a mixture periodic ARCH (MPARCH)
and successfully applied it to model the S&P 500 stock price closing in-
dex. Hamdi and Souam (2013, 2018) have discussed two mixture periodic
GARCH models that constitute very flexible and more parsimonious classes

1
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of periodic time series models of the conditional variance comparatively to
MPARCH models. Recently, Aliat and Hamdi (2019) have proposed the
class of Markov-Switching periodic GARCH models and provide an estima-
tion method based on the generalized method of moments.

It should be pointed out that the estimation of MS-PGARCH model is
a challenging task because the conditional variance depends on the entire
history of regimes generated by the markov chain and thus all the past
information which causes an exponential increase in the number of possible
paths and thus an explosive intractable likelihood.

The main contribution of this work is to propose an estimation approach
for the MS-PGARCH model based on the work of Augustyniak et al. (2018).
We will carry out a simulation study and perform an empirical analysis on
the Algerian exchange rate. We will also compare our method to the GMM
proposed by Aliat and Hamdi (2019).
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ON THE LOCAL LINEAR MODELIZATION OF THE CONDITIONAL

MODE FOR FUNCTIONAL AND ERGODIC DATA

SOMIA AYAD AND SAÂDIA RAHMANI

Abstract. In this paper, we estimate the conditional mode using the local linear approach. We

treat the case when the regressor is valued in a semi-metric space, the response is a scalar and the

data are observed as ergodic functional times series. Under this dependence structure, we state

the almost complete consistency (a.co.) with rates of the constructed estimator. Moreover, an

application on real data has been conducted in order to highlight the superiority of our method

to the standard kernel method, in the functional framework.

2010 Mathematics Subject Classification.62G05, 62G08, 62G20.

Keywords and phrases. Ergodic data, functional data, local linear estimator.

1. The model and its estimate

Let Zi = (Xi, Yi)i=1,...,n be an E × R-valued measurable strictly stationary process, defined on

a probability space (Ω,A, P), where E is a semi-metric space, and d denotes the semi-metric.

Furthermore, we assume that there exists a regular version of the conditional distribution of Y

given X, which is absolutely continuous with respect to the Lebesgue measure on R, and has a

twice continuously differentiable probability density function denoted by fX(Y ), has bounded

density. Moreover, we suppose that the conditional density fX(Y ) is unimodal in some fixed

compact C and the conditional mode, denoted by Θ(x) is defined by:

Θ(x) = arg sup
y∈C

fx(y).

Now, we assume that the underlying process Zi is functional stationary ergodic, a natural and

usual local linear estimator of Θ(x) is given by:

(1) Θ̂(x) = arg sup
y∈C

f̂x(y).

Where f̂x(.) is the local linear estimator of fX(.) defined by:

(2) f̂x(y) =

n∑

j=1

ΓjKjJj

hJ

n∑

j=1

ΓjKj

,

1
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with

Γj =

n∑

i=1

ρ2
i Ki −

(
n∑

i=1

ρiKi

)
ρj ,

ρi = ρ(Xi, x),Ki = K

(
δ(x,Xi)

hK

)
and Jj = J

(
y − Yj

hJ

)
,

where K and J are kernels functions and hK = hK,n (resp. hJ = hJ,n) is a sequence of positive

real numbers. ρ(., .) and δ(., .) are known bi-functional operators defined from E2 into R such

that |δ(x, z)| = d(x, z) and ρ(z, z) = 0,∀z ∈ E . (see Barrientos et al. [2] for some examples

of these two locating functions). Such fast version of functional local linear estimation has

been proposed by Demongeot et al. [8] under the strong mixing condition usually assumed in

functional time series analysis.

We recall that the estimator (2) is obtained from the following minimization procedure:

(3) min
(a0,a1)∈R2

n∑

i=1

(
1

hJ

J

(
y − Yi

hJ

)
− a0 − a1ρ(Xi, x)

)2

K

(
δ(x,Xi)

hK

)
.

The main purpose of this paper is to study the nonparametric estimate Θ̂(x) of the conditional

mode Θ(x) by the local linear approach. Recall that these questions in infinite dimension are

particularly interesting, not only for the fundamental problems they formulate, but also for

many applications, (see for instance Dabo and Laksaci [6] and Dabo et al. [5]).

In the statistical literature, several papers have been devoted to the study of some properties

of the nonparametric stationary ergodic processes estimators (see for instance, Didi and Louani

[10] in the case of complete data and Chaouch et al. [4] for right censored ones).

2. Main results

In the following, for any fixed x in F , Nx denotes a fixed neighborhood of x; and let us denote

by φx(r1, r2) = P(r2 ≤ δ(X,x) ≤ r1) the small ball probability function.

The following proposition establishes the almost complete convergence (with rate) of the con-

ditional density estimator f̂x (y) . This proposition which is of interest by itself used, as an

intermediate result, to prove our main result given in Theorem 2.2.

Proposition 2.1. Under some structural regularity and technical assumptions, we have

sup
y∈C

|f̂x (y) − fx (y) | = O
(
hb1

K

)
+ O

(
hb2

J

)
+ O

(√
ϕx (hK) log n

n2hJφ2
x (hK)

)
, a.co.

Where b1, b2 are positive constants linked to the Lipchitz condition and ϕx (hK) =
n∑

i=1

φi,x(hK).
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Theorem 2.2. Under assumptions of Proposition 2.1, we have

|Θ̂(x) − Θ(x)| = O

(
h

b1
j

K

)
+ O

(
h

b2
j

J

)
+ O

((
ϕx (hK) log n

n2hJφ2
x (hK)

) 1
2j

)
, a.co.

Where j is the order of derivative of conditional density fx.

3. A real data application

In this part, we apply our thereticol results to the problem of ozone concentration forecasting by

the prediction the total ozone in one day ahead using the conditional mode estimation. Precisely,

we consider the the ozone data collected in Marylebone road monitoring site. In this application

study we focus on the hourly measurements of this polluting gas during the 2018-year. The data

of this example is provided by the website https://www.airqualityengland.co.uk/.

In this context, we apply the local linear mode estimation to predict the total ozone concen-

tration in one day ahead the whole daily curves (one day before). Indeed, for the functional

random variables (Xi)i=1,...,N defined by: ∀t ∈ [0, b[, Xi(t) = Z((i−1)b+t)/N , Zt designs the ozone

concentration for 8736 hours between 01/01/2018 and 31/12/2018. We cut this functional time

series in N + 1 = 364 pieces Xi of 24 hours (one day). These functionals variables Xi are

presented by the following figure (Fig. 1.)

Time

5 10 15 20

0
2

0
4

0
6

0
8

0
1

0
0

Fig. 1. Hourly ozone concentration of the year 2018.

The scalar response variable Y is defined by Yi =

23∑

h=0

Xi+1(h). For this comparison study we

compute both estimators ( Ker and LL) in its optimal conditions. In particular, we choose the

optimal bandwidths (hK , hJ ) locally by the cross-validation method on the k-nearest neighbors
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with respect the following MSE-criterion MSE(Ker) = 1
n

n∑

i=1

(Yi − Θ̃−i(Xi))
2, and MSE(LL) =

1

n

n∑

i=1

(Yi − Θ̂−i(Xi))
2 where Θ̃−i (resp. Θ̂−i) designs the leave-one-out kernel (resp. local linear)

estimator of the conditional mode. We use quadratic kernel J(x) = K(x) = 3
4(1 − x2)1I[0,1]. The

semi-metric dPCA based on the m = 3 first eigenfunctions of the empirical covariance operator

associated to the m = 3 greatest eigenvalues is more adapted of these discontinuous curves and

we take ρ = δ (for the LL estimator).

we compute the kernel estimator (Ker) defined by:

Θ̃(x) = sup
y∈C

f̃x(y)

where

f̃x(y) =

h−1
J

n∑

i=1

K(h−1
K d(x,Xi))J(h−1

J (y − Yi))

n∑

i=1

K(h−1
K d(x,Xi))

,

and our LL estimator Θ̂(x).

Now, in order to compare both methods we split our data into two subsets I1 and I2. The 244

observations (Xj , Yj)j∈I1 will be our statistical sample from which are calculated the estimators

and the 120 remaining observations (Xi, Yi)i∈I2 are considered as the testing sample. Next, we

use the following algorithm:

• Step 1. For each curve Xj in the input sample we approximate the associated response

variable Yj by

Ŷj = Θ̃(Xj)

and

Ŷj = Θ̂(Xj).

• Step 2. For each Xnew in the testing sample, we put

i∗ = arg min
j∈I1

d(Xnew,Xj).

• Step 3. For each Xnew we put

hK = the optimal bandwidth parameter associated to X∗
i

and

hJ = the optimal bandwidth parameter associated to Y ∗
i
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• Step 4. We predict Ynew by

Ŷnew = Θ̃(Xnew)

and

Ŷnew = Θ̂(Xnew).

• Step 5. We calculate the prediction error s expressed by

1

120

∑

i∈I1

(Yi − T̂ (Xi))
2,

where T̂ means either the kernel estimator or the local linear one.

• Step 6. We divide again our observations in the two subsets I1 and I2 and we repeat

the step 1-5.

• Step 7. We repeat the Step 6 several times.

• Step 8. We end this analysis by plotting the box-plot of the mean square errors of each

method.

The comparisons study is carried out by repeating the algorithm 60 times with random splitting

of the observations between training and testing sample. We point out that the scatter-plots

indicates that the local linear method is significantly better than the kernel method.

0.
0

0.
5

1.
0

1.
5

2.
0

 Local linear method,     Kernel method

Fig. 2. Comparison of the Ozone concentration prediction between the kernel method and the local linear approach
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4. Conclusion

It should be noticed that, both methods, Nadaraya-Watson and local linear fit, can be thought

as two particular cases of the local polynomial smoother with order k = 0 and k = 1 respectively.

Nevertheless, the first one suffers from a larger bias than the local linear estimator.

In this paper we confirm the superiority of the local linear approach over the kernel method

through the establishment an asymptotic property of our estimator, in terms of the almost-

complete convergence with rates. Moreover, the usefulness of our results is illustrated through

its application to the ozone data.
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ON A MULTISERVER QUEUEING SYSTEM WITH

CUSTOMERS’ IMPATIENCE UNTIL THE END OF

SERVICE UNDER SINGLE AND MULTIPLE VACATION

POLICIES

MOKHTAR KADI, AMINA ANGELIKA BOUCHENTOUF,
AND LAHCENE YAHIAOUI

Abstract. This paper deals with a multi server queueing system with
Bernoulli feedback and impatient customers (balking and reneging) un-
der synchronous multiple and single vacation policies. Reneged cus-
tomers may be retained in the system. Using PGFs probability gen-
erating functions technique, we formally obtain the steady-state solu-
tion of the proposed queueing system. Further, important performance
measures and cost model are derived. Finally, numerical examples are
presented.

2010 Mathematics Subject Classification. 2000 Mathematics Sub-
ject Classification. Primary 60K25; Secondary 68M20; Thirdly 90B22

Keywords and phrases. Queueing models; synchronous vacation;
impatient customers; Bernoulli feedback.

1. Define the problem

Consider a M/M/c queueing model with Bernoulli feedback, balking,
reneging and retention of reneged customers. Customers arrive into the
system according to a Poisson process with arrival rate λ.

the service time, the vacation time, and the impatience time (in vacation
and busy period) are assumed to be exponentially distributed with rates
µ, φ and (ξ0, ξ1) respectively. The service discipline is FCFS and there is a
infinite space for customers to wait. The servers take vacation synchronously
once the system becomes empty, and they also return to the system as one
at the same time.

In this paper we consider two vacation type queueing models
Model I: Single station vacation policy.

Model II: Multiple station vacation policy.

We suppose that the customers timers are independent and identically
distributed random variables and independent of the number of waiting
customers.
Each reneged customer may leave the system without getting service with
probability α and may remain in the queue for his service with probability
σ̄ = (1 − σ). A customer who on arrival finds at least one customer (resp.
c customers) in the system, when the servers are on vacation period (resp.
busy period) either decides to enter the queue with probability θ or balk

1
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with probability θ = 1 − θ.
After completion of each service, the customer can either leave the system
definitively with probability β or come back to the system and join the end
of the queue with probability β′, where β + β′ = 1. Let L(t) be the number
of customers in the system at time t, and J(t) represents the status of the
server at time t, such that

J(t) =

{
0, all the servers are taking a vacation at time t;
1, the servers are busy at time t.

Figure 1. State-transition diagram for Model I

Figure 2. State-transition diagram for Model II
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On the behavior of Lynden Bell estimator under association  

 

This study is devoted to assess the asymptotic behavior of the 

Lynden-Bell estimator for the truncating low under left truncated 

when the process satisfying the association dependence in the sense 

of Esary et al. (1967). This work is a complementary result to the 

work of Guessoum et al. (2012). These authors established a strong 

uniform consistency rate of the Lynden-Bell estimator of the marginal 

distribution function of the interest variable. The accuracy of the 

studied estimates is checked by a simulation study.  
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ON THE ESTIMATION OF THE MEAN OF A

MULTIVARIATE NORMAL DISTRIBUTION UNDER THE

BALANCED LOSS FUNCTION

ABDELKADER BENKHALED

Abstract. In this work, we deal with the shrinkage estimators of the
mean θ of a multivariate normal distribution X ∼ Np

(
θ, σ2Ip

)
, where

the parameter σ2 is unknown and estimated by S2 (S2 ∼ σ2χ2
n). For

compared between two estimators, we use the risk associated to the
balanced loss function. Firstly, we establish the minimaxity of the con-
sidered estimators when the dimension of the parameters space is finite.
Secondly, when the dimension of the parameters space p and the sample
size n tend to infinity, we study the asymptotic behavior of risks ratio
of these estimators to the maximum likelihood estimator (MLE). In the
end, we conduct a simulation study that show the performance of the
considered estimators.

2010 Mathematics Subject Classification. Primary: 62F12. Sec-
ondary: 62C20.

Keywords and phrases. Balanced loss function, James-Stein estima-
tor, Minimaxity, Multivariate normal random variable, Shrinkage esti-
mator , Risks ratio.

1. Define the problem

Let X ∼ Np

(
θ, σ2Ip

)
, where the parameter σ2 is unknown and estimated

by S2 (S2 ∼ σ2χ2
n). Our aim is to estimate the unknown parameter θ by

the shrinkage estimators method.
We consider the estimator

(1) δa =

(
1− a S2

‖X‖2
)
X = X − a S2

‖X‖2X,

where a is a real parameter.
In the first part, we study the minimaxity of the estimator δa. For a =

(1−ω)(p−2)
n+2 := α we obtain the James-Stein estimator

(2) δJS =

(
1− α S2

‖X‖2
)
X,

and we deduce the positive-part of James-Stein estimator

(3) δ+JS =

(
1− α S2

‖X‖2
)+

X =

(
1− α S2

‖X‖2
)
XI

α S2

‖X‖2≤1

where
(

1− α S2

‖X‖2
)+

= max
(

0, 1− α S2

‖X‖2
)

and I
α S2

‖X‖2≤1
denoted the indi-

cating function of the set (α S2

‖X‖2 ≤ 1). Moreover we study the domination

of δ+JS to δJS .
1
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In the second part, we treat the asymptotic behavior of risks ratios of
James-Stein estimator and the positive-part of the James-Stein estimator to
the MLE, when the dimension p tends to infinity and the sample size n is
fixed on one hand, and on the other hand when p and n tend simultaneously
to infinity.

Finally, we graphically illustrate the obtained results.
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Title : On the existence and stability of solutions of stochastic di¤erential
systems driven by G-Brownian motion
Autors : El-Hacène Chalabi
Abstract :
In this paper, we study the Carathéodory approximate solution for the folow-

ing stochastic di¤erential systems driven by G-Brownian motion.8>>>>>>>>>><>>>>>>>>>>:

X1 (t) = X1 (0) +
R t
0
f1;1 (s;X1 (s) ; : : : ; Xn (s)) ds+R t

0
f2;1 (s;X1 (s) ; : : : ; Xn (s)) d hBi (s)+R t

0
f3;1 (s;X1 (s) ; : : : ; Xn (s)) dB (s)

...
...

Xn (t) = Xn (0) +
R t
0
f1;n (s;X1 (s) ; : : : ; Xn (s)) ds+R t

0
f2;n (s;X1 (s) ; : : : ; Xn (s)) d hBi (s)+R t

0
f3;n (s;X1 (s) ; : : : ; Xn (s)) dB (s)

Based on the Carathéodory approximation scheme, we prove under some
suitable conditions that our system have a unique solution and show that the
Carathéodory approximate solutions converges to the solution of the system.
Moreover, we prove a stability theorem for our system.
Keywords : G-expectation, G-brownian motion, G-stochastic di¤erential

equations, Carathéodory approximation scheme.
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ON THE LOCAL TIME OF A REFLECTING BROWNIAN

MOTION

A. BENCHÉRIF-MADANI AND N. KACEM

Abstract. Let X(t) be a Brownian motion reflecting at zero. We prove
that the time spent below zero (up to t) by the penalized Brownian
motion, normalized by a square root, converges in probability to the
local time of reflecting Brownian motion at zero. That is, consider the
reflecting Brownian motion Xt in R+ starting at 0 for convenience

Xt = Bt + Lt,

in which B is a standard Brownian motion and Lt is the local time at 0.
Set β(x) = −x/δ for x ≤ 0 and β = 0 otherwise. Consider the penalized

diffusions Xδ
t , also starting from 0, i.e. Xδ

t = Bt −
R t

0
β(Xδ

s )ds and the
time spent below zero (up to t)

T δ(t) =

Z t

0

I{Xδ
s≤0}ds.

We prove that there exists a constant c0 > 0 such that for all t as δ → 0

we have
T δ(t, 0)√

δ
→ c0L(t, 0) in probability.

Applications include Finance for example and PDEs etc. .

2010 Mathematics Subject Classification. 60xx, 35xx.

Keywords and phrases. Reflecting diffusion, Local time, PDEs.

1. Setting of the problem

Let X be a linear diffusion in R+ reflecting at zero. The actual knowledge
of the local time at the end-point zero, say Lt, is important in many pratical
problems such as Finance for example or PDEs with boundary conditions,
especially of Neumann type. Recall that this is the probabilistic counterpart
of the study of, .e.g., the PDE ∂tu(t, x) = a(x)∂xxu(t, x)+b(x)u(t, x)∂xu(t, x)
in x > 0 together with ∂xu(t, x) = d at zero. Indeed, by using simulations
and probabilistic representations for the solution of the above deterministic
PDE, we often can derive an approximate solution exactly as is routine work
with ordinary numerical methods for PDEs, see e.g. [?].
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On the solution of Mckean-Vlasov equations via small 

delays 

Mohamed Amine Mezerdi 
Laboratory of Applied Mathematics, University of Biskra, 

P. O. Box 145, Biskra (07000), Algeria, 

amine.mezerdi@univ-biskra.dz 

Abstract 
We study the strong convergence of the Carathéodory numerical 

scheme for a class of nonlinear McKean-Vlasov stochastic differential 

equations (MVSDE). We prove, under Lipschitz assumptions, the 

convergence of the approximate solutions to the unique solution of 

the MVSDE. Moreover, we show that the result remains valid, under 

continuous coefficients, provided that pathwise uniqueness holds. The 

proof is based on weak convergence techniques and the Skorokhod 

embedding theorem. In particular, this general result allows us to 

construct the unique strong solution of a MVSDE by using the 

Carathéodory numerical scheme. Examples under which pathwise 

uniqueness holds are given.  

Keywords: McKean-Vlasov equation; mean-field equation; 

carathéodory numerical scheme; wasserstein distance; delay 

equation; tightness; pathwise uniqueness; strong solution.  
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OPTIMUM COST ANALYSIS FOR A DISCRETE-TIME

MULTISERVER WORKING VACATION QUEUEING SYSTEM

WITH CUSTOMERS’ IMPATIENCE

LAHCENE YAHIAOUI, AMINA ANGELIKA BOUCHENTOUF, AND MOKHTAR KADI

Abstract. In this work, we deal with a discrete-time finite-capacity mul-
tiserver queueing system with Bernoulli feedback, synchronous multiple and

single working vacations, balking, and reneging during both busy and work-
ing vacation periods. A reneged customer can be retained in the system by

employing certain persuasive mechanism for completion of service. Using re-

cursive method, the explicit expressions for the stationary state probabilities
are obtained. Based on the system performance measures, a cost model is for-

mulated. Then, the optimization of the model is carried out using quadratic

fit search method (QFSM).

Keywords and phrases. Multiserver queueing systems, synchronous vaca-

tion, impatient customers, Bernoulli feedback, cost model, optimization.

1. Introduction

Discrete-time queueing systems attainted a significant importance because of
their wide applicability in the performance analysis of telecommunication systems.
They are very appropriate for modeling and analyzing digital communication sys-
tems. Typical examples are synchronous communication systems (slotted ALOHA),
packet switching systems with time slots and broad integrated services digital net-
works (B-ISDN) based on asynchronous transfer mode (ATM) technology, as the
information contained in the B-ISDN is routed through discrete units. More details
on discrete-time queues are given in the survey paper of [3] and the monographs of
[2, 5, 1]. In this work, we consider a finite-buffer discrete-time multiserver queueing
system with Bernoulli feedback, single and multiple working vacation policies, balk-
ing, reneging during both normal busy and working vacation periods, and retention
of reneged customers under late arrival system with delayed access (LASDA).

2. The model

We suppose that inter-arrival times A of customers, service times during both
normal and working vacation periods, vacation times, impatience time are inde-
pendent and geometrically distributed with rates λ, µ, ν, θ, and ξ respectively. The
system is composed of c servers. The discipline of system is FCFS . The capac-
ity of the system is taken as finite (say, N). The arriving customer may join the
queue with probability ϑn or balk with a complementary probability ϑn = 1 − ϑn,
with 0 ≤ n ≤ N. In addition, we suppose that 0 ≤ ϑn+1 ≤ ϑn ≤ 1, c ≤ n ≤
N − 1, ϑ0 = 1, ..., ϑc−1 = 1, and ϑN = 0. A synchronous vacation is considered,
that is, the servers go all together on working vacation, under multiple working
vacation (MWV) or single working vacation policy. Further, customers may get
impatient and leave the queue without getting service with some probability σ.
The reneged customer can be retained in the queueing system with probability
σ = 1 − σ. After completion of each service, a customer can either join the end of
the queue for another regular service with probability β or leave the system with

1

556
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probability β, where β = 1 − β. Further, note that at one slot we may have, one
arrival, a departure from a service, and a departure from the queue as reneged
customer.

3. Steady-state analysis

Let δ be the indicator function:

δ =

{
1, for the single working vacation model,
0, for the multiple working vacation model.

At steady-state, πi,0, 0 ≤ i ≤ N denotes the probability that there are i customers
in the system when the servers are in working vacation period and πi,1, 1 − δ ≤
i ≤ N is the probability that there are i customers in the system when the servers
are in normal busy period.
Based on the one-step transition analysis, the steady-state equations can be given
as

π0,0 = M0(η)π0,0 + A1(η)π1,0 + C2d2(η)π2,0 + A1(µ)π1,1 + C2(µ)π2,1,

πi,0 = θ [Ai+1(η)πi+1,0 +Bi−1(η)πi−1,0 + Ci+2(η)πi+2,0 +Mi(η)πi,0] , i = 1...N,

π0,1 = λπ0,1 + θλδπ0,0,
π1,1 = M1(µ)π1,1 +A2(µ)π2,1 + C3(µ)π3,1 + λδπ0,1 + θ [M1(η)π1,0 + λπ0,0 + A2(η)π2,0

+C3(η)π3,0] ,
πi,1 = Mi(µ)πi,1 +Bi−1(µ)πi−1,1 +Ai+1(µ)πi+1,1 + Ci+2(µ)πi+2,1 + θ (Mi(η)πi,0 +Bi−1(η)

×πi−1,0 +Ai+1(η)πi+1,0 + Ci+2(η)πi+2,0) , i = 1...N,

where Ai(x) = λϑi(di(x) ri + di(x)ri) + λϑidi(x)ri; 1 ≤ i ≤ N

Bi(x) = λϑi di(x) ri; 0 ≤ i ≤ N − 1, Ci(x) = λϑidi(x)ri; 2 ≤ i ≤ N.

Mi(x) =

{
λ(1 − θδ) ; i = 0

λϑi di(x) ri + λϑi(di(x) ri + di(x)ri) ; 1 ≤ i ≤ N
where

dn(x) =

{
1 − xβ

n
, if 1 ≤ n ≤ c− 1,

1 − xβ
c
, if c ≤ n ≤ N,

and rn =

{
0, if 1 ≤ n ≤ c,

1 − ξσ
n−c

, if c+ 1 ≤ n ≤ N.
We obtain the steady-state probabilities πi,0, 0 ≤ i ≤ N and πi,1, 1 − δ ≤ i ≤ N,
using a recursive method, the results of the steady-state probabilities and perfor-
mance measures find in [4].

4. Optimisation analysis

The total expected cost per unit time of the system, Γ, is given as

Γ = CbPb + CwvPwv + CidPidCRb + CrRren + CretRret + CqE(Lq)+

+c(µCs1 + νCs2) + c(µ+ ν)(1 − β)Cs−f + cCa,

where (Pb), (Pwv), (Pid), (Br), (Rren), (Rret), and (E(Lq)), are the probabilities
that the servers are on normal busy period, working vacation period, idle dur-
ing busy period, average balking, reneging and retention rates, and average queue
length respectively. The cost elements associated Ci are defined in [4]. The ob-
jective is to determine the optimal service rate during normal busy period, µ∗

using quadratic fit search method (QFSM). The cost minimization problem can

be given as minµ Γ(µ). For the numerical purpose we put ϑn = 1 − n

N
, fixe

Cb = 1, Cwv = 0.5, Cq = 1.5, CRb = 1, Cren = 1, Cid = 0.5, Cret = 1, Cs1 =
2.5, Cs2 = 2, Cs−f = 1, and Ca = 0.5 and consider the following cases:

- Table 1 and Figure 1: λ = 0.8, β = 0.7, c = 3, θ = 0.4, ξ = 0.5, α = 0.5,
and N = 20.
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- Table 2 and Figure 2: λ = 0.8, β = 0.7, c = 2, ν = 0.2, ξ = 0.8, α = 0.5,
and N = 20.

- Table 3 and Figure 3: λ = 0.8, β = 0.7, c = 3, θ = 0.4, ν = 0.3, α = 0.5,
and N = 20.

- Table 4 and Figure 4: λ = 0.8, β = 0.7, ν = 0.3, θ = 0.4, ξ = 0.5, α = 0.5,
and N = 20.
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Figure 1. µ∗ vs. Γ un-
der SWV policy.
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Figure 2. µ∗ vs. Γ un-
der SWV policy.
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Figure 3. µ∗ vs. Γ un-
der MWV policy.
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Figure 4. µ∗ vs. Γ un-
der MWV policy.

ν = 0.05 ν = 0.1 ν = 0.15
SWV MWV SWV MWV SWV MWV

µ∗ 0.3530611 0.3529851 0.3532569 0.3531987 0.3534304 0.3533881
Γ∗ 7.602 7.602198 7.946371 7.94651 8.29081 8.290895

Table 1. µ∗ and Γ∗, for different values of ν, under SWV and
MWV policies.

θ = 0.1 θ = 0.3 θ = 0.9
SWV MWV SWV MWV SWV MWV

µ∗ 0.4082898 0.4075521 0.4418178 0.4411087 0.4526102 0.4525709
Γ∗ 7.342124 7.343256 7.293472 7.294413 7.279612 7.279648

Table 2. µ∗ and Γ∗, for different values of θ, under SWV and
MWV policies.
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ξ = 0.1 ξ = 0.2 ξ = 0.4
SWV MWV SWV MWV SWV MWV

µ∗ 0.4777952 0.4777702 0.4325604 0.4325421 0.3733920 0.3733847
Γ∗ 9.842556 9.842644 9.644805 9.644819 9.400941 9.400905

Table 3. µ∗ and Γ∗, for different values of ξ, under SWV and
MWV policies.

c=2 c=3 c=4
SWV MWV SWV MWV SWV MWV

µ∗ 0.527004 0.527511 0.353839 0.353835 0.267373 0.267376
Γ∗ 7.969997 7.969291 9.324464 9.324418 10.56634 10.56633

Table 4. µ∗ and Γ∗, for different values of c, under SWV and
MWV policies.

− Using QFSM, the optimal values of µ and the minimum expected cost Γ(µ∗)
are shown in Tables 1-4, for different values of ν, θ, ξ, and c respectively. From
Figures 1-4, it is well observed the convexity of the curves for different values of ν,
θ, ξ, and c. This proves that there exists a certain value of the service rate µ that
minimizes the total expected cost function for the chosen set of system parameters.

− From Tables 1-3, we observe that for different values of ν, θ, and ξ, the
minimum expected cost Γ(µ∗) in SWV model is lower than that in MWV model,
as intuitively expected. While from Table 4, Γ(µ∗) in SWV model is larger than
that in MWV model. This can be explained by the fact that for c = 2, 4, the
optimum service rate µ∗ under SWV policy is smaller than µ∗ under MWV policy.
In addition, this can be because of the choice of the system parameters.
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PROCESSUS MARKOV GENERALISE
ESPACE HILBERT
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Résumé

In the work that is presented, we propose methods of estimation and
forecasting ona time interval by cutting a continuous time process into
pieces of contiguous curves .Examples can be drawn from medical signals
(ECG, EEG, EMG, ...) of financial data, meteorological data, ... this, we
use functional processes that are exploited with ARB models (autoregres-
sive process with values in a Banach space). On the inferential plane,
we adopt a generalized Markov modelization to make the estimation and
theprediction. The generalized Markov processes are long memory Mar-
kov processes, they can be, among others, solution of differential stochastic
differential equation. Statistical techniques of these processes need to be
developed to describe these processes and to apply forecasting techniques
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Abstract

The paper studies partially observed optimal control problems of general
McKean-Vlasov differential equations, in which the coefficients depend on
the state of the solution process as well as of its law and the control variable.
By applying Girsanovs theorem with a standard variational technique, we
establish a stochastic maximum principle on the assumption that the control
domain is convex. As an application, partially observed linear-quadratic
control problem is discussed.

Keywords: Stochastic maximum principle, Partially observed optimal
control, McKean-Vlasov differential equations, Probability measure.
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PERIODIC INTEGER-VALUED AR (p) PROCESS FOR
MODELING AND FORECASTING SEASONAL COUNTS

PHENOMENA.

SADOUN MOHAMED AND BENTARZI MOHAMED

Abstract. This contribution proposes a periodic integer-valued au-
toregressif PINAR (p) model, in order to analyze the number of certain
arrivals in a �xed time interval with seasonal behavior. Two methods of
parameters estimation will be proposed, namely : the conditional least
squares (CLS) and the conditional maximum likelihood (CML) meth-
ods. Moreover, the prediction function of the model will be given using
some representation of the conditional expectation. The performance
of the obtained estimators, will be shown via an intensive simulation
study. To assess the �tting and forecasting quality of the model, an
application on two real data set will be realized to model the number of
hospital admissions per month caused by in�uenza, and the daily counts
of daytime road accidents.

2010 Mathematics Subject Classification.62F12, 62M10.

Keywords and phrases. Periodically correlated integer-valued process,
periodic INAR (p) model, conditional least squares (CLS) estimation,
conditional maximum likelihood (CML) estimation.

1. Define the problem

The periodic integer-valued autoregressive (PINAR) model have been in-
troduced to model counting phenomena that evolve over time with a seasonal
structure. The distribution of a parametric PINAR (p) process is mainly de-
scribed by two blocs of parameters, namely a periodic vector auto-regression
coe¢ cient and a periodic probability distribution on positive integers be-
longing to parametric family, called an innovation distribution. It is worth
mentioning that the applications of the periodic version of the INAR (p)
process are rare in the literature. In this context we can mention the work
of Moriµna et al (2011) who suggested for the number of arrivals per week
to the emergency service of the hospital in Barcelona caused by in�uenza
time series, an particular INAR (2) process with a seasonal structure. The
present paper suggests a periodic INAR (p) model based on binomial thin-
ning operator, and driven by a periodic sequence of independent random
variables with some discrete distribution, to describe and forecast the sea-
sonal time series of count. Brie�y, a periodically correlated, in the sense
of Gladyshev (1963) with period S (where S is a strictly positive integer,
S � 2), integer-valued process fyt; t 2 Zg, is said to be a Periodic p-order
Integer-Valued Autoregressive (PINARS (p)) model, if it is a solution of the
following non-linear di¤erence stochastic equation :

yt =
Pp
i=1 't;i � yt�i + "t; t 2 Z; (1:1a)

where the underlying non-negative integer-valued process fyt; t 2 Zg, is a
1
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periodically correlated, with the positive integer period S (S � 2) and the
innovation process, f"t; t 2 Zg, is a periodic sequence of independent non-
negative integer-valued random variables, with some discrete distribution
belonging to the parametric family

�
G�t

���t = (�t;1; :::; �t;q)0 2 A � Rq+	,
where A is an open, convex subset of Rq+. The column vector parameters
'
t
=
�
't;1; :::; 't;p

�0 and �t are periodic, with respect to t, with period S
(S � 2), where S is the smallest positive integer such that '

t+rS
= '

t
and �t+rS = �t. Finally the symbol " � " stands the binomial thinning op-
erator proposed by Steutel and Van Harn (1979), which is de�ned as follows:

't;i � yt�i =
� Pyt�i

k=1 Yk;t;i;
0;

if yt�i > 0;
if yt�i = 0:

(1:1b)

Note that the sequences of (i:i:d) random variables of counts fYk;t;i; k 2 Ng
are mutually independents for t 2 Z; i = 1; : : : ; p. fYk;t;igk2N;t2Z;i=1;:::;p
are Bernoulli variables with periodic success probability 's;i 2 (0; 1) ; s =
1; 2; : : : ; S and i = 1; : : : ; p, which are independent of the innovation process.

So, we de�ne the p + q�column vector �s =
�
'0
s
;�0s

�0
2 (0; 1)p � A �

Rp+�R
q
+, s = 1; 2; : : : ; S, in order to de�ne the global vector of the parame-

ters of the model (1:1) of dimension (p+ q)S, � =
�
�01; �

0
2; :::; �

0
S

�0.
Estimation and prediction of the model.
Let y(n) =

�
y
(n)
1 ; : : : ; y

(n)
n

�
be a realization of a �nite size n of a peri-

odically correlated integer-valued autoregressive process fyt; t 2 Zg satisfy-
ing the periodically stationary integer-valued autoregressive model (1:1a).
For the simplicity reasons, we suppose that n = mS, m 2 N� and let
t = s + �S; s = 1; : : : ; S; and � = 0; 1; : : : ;m � 1. We know that the CLS
estimator is a

p
m�consistent estimator of

�
'0
s
;�G�s

�0
(see, e.g Du and Li,

(1991)), which implies in a second step a
p
n�consistent estimator of �:

Proposition 1: (Constructing a
p
m-Consistent Estimator for

�
'0
s
;�G�s

�0
).

Let '
s
2 [0; 1]p, � probability measure on Z+ with �nite support, and G�s

such that EG�s ["0]
3 <1 and g�s(0) 2 (0; 1) then :�p

m
�
'
s;m

� '
s

�0
;
p
m
�
��s;m � �G�s

�0�0
converges in distribution under

H
(n)
g (�) where :�
'
s;m

�G�s ;m

�
=0BBBB@

Pm�1
�=0 y

2
(s�1)+�S

Pm�1
�=0 y(s�1)+�Sy(s�2)+�S : : :

Pm�1
�=0 y(s�1)+�SPm�1

�=0 y(s�2)+�Sy(s�1)+�S
Pm�1
�=0 y

2
(s�2)+�S : : :

Pm�1
�=0 y(s�2)+�S

...
...

. . .
...Pm�1

�=0 y(s�1)+�S
Pm�1
�=0 y(s�2)+�S : : : m

1CCCCA
�1

�

0BBB@
Pm�1
�=0 y(s�1)+�Sys+�SPm�1
�=0 y(s�2)+�Sys+�S

...Pm�1
�=0 ys+�S

1CCCA
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Proposition 2: (Conditional Maximum Likelihood Estimator). We call an

estimator
�b�n�

n2Z+
of � a conditional maximum likelihood CML estima-

tor of � if b�n maximizes the conditional likelihood function associated to the
model (2:4:a), i.e.,

8n 2 Z+ :
�b�n� 2 arg

(�)2[0;1]pS�AS
max

�
m�1Q
�=0

SQ
s=1

P
�s
(ys�1+�S ;:::;ys�p+�S);ys+�S

�
;

or more precisely for any s 2 f1; : : : ; Sg being �xed,

8m 2 Z+ :
�b�s;m� 2 arg

(�s)2[0;1]�A
max

�
m�1Q
�=0

P
�s
(ys�1+�S ;:::;ys�p+�S);ys+�S

�
:

b�s;m =
�b'0

s;m
; b�0s;m�0 maximizes the sth likelihood if only if the following

conditions hold :

a) bg�s;m (e) = 0 for e < 0 and e > us+, with us+ = max�=0;:::;m�1 (ys+�S)
b) b�s;m is a solution to the (constrained) optimization problem

max
xs;1;:::;xs;p
zs;1 ;:::;zsq

8><>:
m�1Q
�=0

0B@ys+�SP
e=0

gzs (e)
P

0�kl�ys�l+�S ;l=1;:::;p
k1+:::+kp=ys+�S�e

hQp
l=1

�y(s�l)+�S
kl

�
xkls;l(1� xs;l)

y(s�l)+�S�kl
i1CA
9>=>;

subject to

0 � xs;i � 1 for s 2 f1; : : : ; Sg �xed and i = 1; : : : ; p,
gzs;j � 0 for s 2 f1; : : : ; Sg �xed and 8j = 1; : : : ; q with

Pus+
e=0 gzs;j (e) = 1.

We stress that we, nowhere, impose that such a maximum location is unique.
Let Fn = � (y1; : : : ; yn) be the �-algebra generated from y1; y2; : : : ; yn,

then the minimum variance predictor yn (1) of yn+1 is given bybyn (1) = E� (yn+1jFn) =Pp
i=1 '1;iyn+1�i + �G�1 ,

we can see that for h = 2, the minimum variance predictor yn (2) of yn+2 is
given bybyn (2) = E� (yn+2jFn) =Pp

i=1 E�
�
'2;i � yn+2�ijFn

�
+ �G�2

,

and according to (Yan, 1985), we have

E�
�
'2;i � yn+2�ijFn

�
= E�

�
E�
�
'2;i � yn+2�ijyn+2�i;Fn

�
jFn

�
= '2;iE� (yn+2�ijFn) = '2;ibyn+2�i = '2;ibyn (2� i)

by induction we can give the general formula for a h > 2 taking into account
the periodicity of the parameters of the model, under the proposition below.
Proposition 3: (Short-term predictor of minimum variance). Let Fn =
� (y1; : : : ; yn) be the �-algebra generated from y1; : : : ; yn, then the minimum
variance predictor yn (h) of yn+h is given for h > 2 bybyn (h) = E� (yn+hjFn) =Pp

i=1 'r+S;ibyn (h� i) + �G�r+S ,
where r is the remainder of the Euclidean division of h over S i.e., h and
r are congruent modulo S and we write h � r [S].
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Numerical illustration.
We have evaluated the Conditional Least-Squares (CLS), and the Condi-

tional Maximum-Likelihood (CML) estimations, on a time series, of small,
moderate, and relatively large sizes (n = 80; 400; 1000), generated from
a PINARS (p) model driven by a periodic Negative-Binomial innovation
process, NB (�s;1; �s;2), s = 1; 2; 3; 4. The true parameter values of this
model are :
Model : � = [('1;�1;1; �1;2) ; ('2;�2;1; �2;2) ; ('3;�3;1; �3;2) ; ('4;�4;1; �4;2)]

0 ;
= [(0:90; 3; exp (�3)) ; (0:40; 1; exp (�5)) ; (0:66; 2; exp (�2)) ; (0:53; 4; exp (�4))]0 :

Our main goal is, on one side, to show empirically the consistency property of
the CLS and CML estimators, while using Root Mean Square Error RMSE
criterion, and on the other side, to show empirically the CML performance
over the CLS estimations.
Table 1. Simulation results of the CLS and the CML estimates for Model

s 's b's RMSEs �s;1 b�s;1 RMSEs �s;2 b�s;2 RMSEs

CLS
n =
80

1
2
3
4

:90
:40
:66
:53

:9110
:3681
:6604
:5082

:0304
:0941
:0071
:0852

3
1
2
4

3:4116
1:2179
1:6414
4:3597

1:6122
:5398
:7309
:8733

:0498
:0067
:1353
:0183

:0602
:0077
:0918
:0196

:0378
:0021
:0469
:0035

CML
n =
80

1
2
3
4

:90
:40
:66
:53

:8983
:3716
:6607
:5186

:0200
:0916
:0080
:0867

3
1
2
4

3:1842
1:1965
1:6376
4:2902

:7273
:5343
:6500
:9996

:0498
:0067
:1353
:0183

:0522
:0076
:0915
:0194

:0083
:0020
:0424
:0030

CLS
n =
400

1
2
3
4

:90
:40
:66
:53

:9015
:3955
:6602
:5249

:0107
:0450
:0029
:0366

3
1
2
4

2:9312
1:0334
1:8610
4:0495

:3321
:2282
:5369
:3291

:0498
:0067
:1353
:0183

:0488
:0069
:1098
:0185

:0036
:0009
:0184
:0013

CML
n =
400

1
2
3
4

:90
:40
:66
:53

:8992
:3928
:6601
:5275

:0083
:0409
:0031
:0332

3
1
2
4

2:9823
1:0431
1:7777
4:0670

:2674
:2052
:5312
:3037

:0498
:0067
:1353
:0183

.0487
:0069
:1115
:0186

:0029
:0007
:0119
:0010

CLS
n =
1000

1
2
3
4

:90
:40
:66
:53

:8995
:3977
:6598
:5286

:0056
:0264
:0018
:0196

3
1
2
4

2:9353
1:0213
1:8777
4:0233

:2018
:1341
:3456
:2204

:0498
:0067
:1353
:0183

:0489
:0068
:1142
:0184

:0023
:0005
:0069
:0008

CML
n =
1000

1
2
3
4

:90
:40
:66
:53

:8998
:3988
:6596
:5284

:0036
:0214
:0021
:0213

3
1
2
4

2:9876
1:0079
1:8733
3:9998

:1959
:1436
:4300
:2151

:0498
:0067
:1353
:0183

:0493
:0068
:1259
:0183

:0018
:0006
:0079
:0008

Hospital admissions data. We consider �rst the seasonal data set of 424
observations, consisting of the weekly numbers of those diagnosed with �u in
the Region of Catalonia (Spain) between 2009 and 2016. We are interested in
modeling this seasonal real data by a periodic integer-valued autoregressive
of order 2 and with period S = 13, PINAR13(2) model with marginal
Geometric distribution. The choise of S = 13 instead of S = 12 allowed us
to have more reliable results. The CLS and the CML estimates b�s;cls andb�s;cml, respectively, of the parameters 's;i and e��s = ps; s = 1; 2; :::; 13,
and i = 1; 2, as well as their empirical Root Mean Square Error (RMSE),
in parentheses, are given in Table 2.

565
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:

Table 2: The estimated parameters from Geometric PINAR13(2) Model
s /P 1 2 3 4 5 6 7 8b's;1;cls

RMSEsb's;2;cls
RMSEsbps;cls
RMSEsb's;1;cml
RMSEsb's;2;cml
RMSEsbps;cml
RMSEs

:7324
(:6844)
:7528
(:5120)
:0029
(:0031)
:8898
(:6014)
:9040
(:5051)
:0046
(:0026)

:7133
(:5728)
:7999
(:2142)
:0006
(:0007)
:8895
(:3386)
:9515
(:1725)
:0010
(:0006)

:6531
(:2352)
:7547
(:2185)
:0006
(:0008)
:7145
(:2319)
:9043
(:2038)
:0012
(:0008)

:4553
(:2395)
:6787
(:2893)
:0009
(:0012)
:5152
(:1966)
:7916
(:2040)
:0016
(:0010)

:0813
(:0103)
:0101
(:0103)
:0370
(:0506)
:0821
(:0070)
:0089
(:0064)
:0643
(:0045)

:2254
(:2596)
:0219
(:0297)
:0605
(:0772)
:2345
(:2377)
:0223
(:0188)
:0774
(:0522)

:2221
(:2551)
:0519
(:0718)
:0800
(:1049)
:2500
(:2244)
:0482
(:0448)
:1233
(:1019)

:7183
(:2574)
:3340
(:4063)
:0292
(:0367)
:8433
(:2387)
:3044
(:3184)
:0462
(:0116)

s /P 9 10 11 12 13b's;1;cls
RMSEsb's;2;cls
RMSEsbps;cls
RMSEsb's;1;cml
RMSEsb's;2;cml
RMSEsbps;cml
RMSEs

:7892
(:1262)
:7824
(:2193)
:1594
(:1575)
:8963
(:0828)
:7964
(:1476)
:2671
(:0095)

:6834
(:2867)
:7227
(:3070)
:0493
(:0615)
:8007
(:2378)
:8795
(:1872)
:0827
(:0288)

:7158
(:2846)
:7202
(:2728)
:0126
(:0163)
:8328
(:2430)
:9214
(:2086)
:0192
(:0160)

:4523
(:2252)
:7616
(:2545)
:0235
(:0324)
:5081
(:1831)
:8778
(:1884)
:0416
(:0255)

:6147
(:3121)
:6182
(:2285)
:0625
(:0623)
:5696
(:2740)
:5609
(:2183)
:0391
(:0078)

Daytime road accidents data. We consider secondly the seasonal data
set of 365 observations, consisting of the daily counts of daytime road acci-
dents in Schiphol area, in Netherlands for the year (2001). We are interested
to model this seasonal real data by a periodic integer-valued autoregressive
of order 2 and with period S = 7, PINAR7(2) with marginal Geometric
distribution. The CLS and the CML estimates b�s;cls and b�s;cml, respec-
tively, of the parameters 's;i and e

��s = ps; s = 1; 2; :::; 7, and i = 1; 2, as
well as their empirical Root Mean Square Error (RMSE), in parentheses,
are given in Table 3.

:

Table 3: The estimated parameters from Geometric PINAR7(2) Model
s /P 1 2 3 4 5 6 7b's;1;cls

RMSEsb's;2;cls
RMSEsbps;cls
RMSEsb's;1;cml
RMSEsb's;2;cml
RMSEsbps;cml
RMSEs

:1941
(:1125)
:1371
(:1651)
:1568
(:3632)
:1758
(:0280)
:0321
(:0426)
:1602
(:3021)

:1204
(:1392)
:1198
(:1138)
:1260
(:4993)
:0176
(:0236)
:0474
(:0312)
:1251
(:4977)

:2010
(:1371)
:3183
(:1348)
:1289
(:7650)
:1817
(:0375)
:3372
(:0394)
:1325
(:4055)

:2601
(:1318)
:1474
(:1457)
:1759
(:9358)
:2600
(:0343)
:0643
(:0216)
:1681
(:3834)

:1954
(:0934)
2880
(:0836)
:9417
(:1861)
:1903
(:0190)
:2941
(:0173)
:1312
(:2053)

:1399
(:1229)
:1415
(:1007)
:2750
(1:060)
:0796
(:0280)
:1348
(:0309)
:2705
(:3583)

:1836
(:1366)
:2397
(:1547)
:1556
(:3813)
:1329
(:0471)
:1829
(:0590)
:1514
(:2922)
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6 SADOUN MOHAMED AND BENTARZI MOHAMED

Concluding comments. We have proposed, a periodic INAR (p) model
to provide a more �exible modeling and forecasting framework, which is able
to capture the features of the data such as seasonal e¤ects. We have also
annonciated a de�nition and some existing results concerning the proposed
model. The conditional least squares (CLS) and conditional maximum like-
lihood (CML) estimators are established, and the performance of the ob-
tained estimators are studied via simulation study. Two real data examples
are also illustrated to show the goodness of the �t and the prediction of our
PINARS (p) model.
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PROBLEM OF BSDE UNDER G-BROWNIAN MOTION

GUESRAYA SABRINA AND DR.CHALA ADEL

Abstract. we study the optimal control by G-Backward stochastic dif-
ferential equation.we adapt the stochastic maximum principle to find
necessary and sufficient conditions for the optimal control of G-BSDE.

Keywords and phrases. G-Brownian motion, stochastic maximum
principle, G-Backward stochastic differential equation (G-BSDE).

1. Define the problem

For any u ∈ U we consider the backward stochastic differential equations
by a G-Brownian motion (Bt)t≥0 in the following form:

{
dyt = f (t, yt, zt, ut) dt+ g (t, yt, zt, ut) d〈BG〉t − ZtdBG

t + dkt,

yT = ξ.

where
f : [0, T ]× Ω× R× R× U −→ R
g : [0, T ]× Ω× R× R× U −→ R

K is a decreasing G−martingale

The expected cost is given by

J(u) = E
[∫ T

0
h (t, yt, zt, ut) dt+ g(y0)

]

where
h : [0, T ]× Ω× R× R× U −→ R
g : R −→ R

let T be a fixed strictly positive real number and consider the following sets
A is a closed and convex of R
U the class of measurable,adapted processes u : [0, T ]× Ω −→ A
we shall denote by U the class of measurable,adapted processes u ∈ U

such that

E
[∫ T

0
| ut |2 dt

]
<∞

Almost surely, such u ∈ U are called admissible control processes.
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QUADRATIC BSDES WITH TWO REFLECTING
BARRIERS AND A SQUARE INTEGRABLE TERMINAL

VALUE

ROUBI ABDALLAH, LABED BOUBAKEUR, AND BAHLALI KHALED

Abstract. We consider backward stochastic di¤erential equations (BS-
DEs) with two re�ecting barriers which generator H(t; !; y; z) has a qua-
dratic growth in its z-variable and a square integrable terminal value
�. The solutions is constrained to stay between two time continuous
processes L and U (called the barriers). We establish the existence
of solutions when H(t; !; y; z) = f(y)jzj2 and also when H(t; !; y; z) =
a+bjyj+cjzj+f(y)jzj2. The uniqueness and the comparison of solutions
are also established when the generator is of the form f(y)jzj2. The main
tools are Krylov�s estimate and ItÃ´-Krylov�s formula, which are proved
here, for the solutions of backward stochastic di¤erential equations with
two re�ecting barriers.

MSC 60H10, 60H20

Keywords and phrases. Re�ected quadratic BSDE; Local time; Oc-
cupation time formula; Krylov�s inequality; Itô�Krylov�s formula; Tanaka�s
formula.

Université Med Khider Département de Maths, B.P. 145 Biskra, Algérie.
E-mail address : abdallah.roubi@univ-biskra.dz

Université Med Khider Département de Maths, B.P. 145 Biskra, Algérie.
E-mail address : b.labed@univ-biskra.dz

Université de Toulon, IMATH, EA 2134, 83957 La Garde, France.
E-mail address : bahlali@univ-tln.fr

1

569



RETRIAL QUEUEING MODEL WITH BERNOULLI

FEEDBACK AND ABANDONED CUSTOMERS

RAMDANI HAYAT, AMINA ANGELIKA BOUCHENTOUF, LAHCENE YAHIAOUI,
AND ABBES RABHI

Abstract. In this work, we present the necessary stability condition of
a retial queueing system with two orbits,abandoned and feedback cus-
tomers. Two independent Poisson streams of customers arrive to the
system, and flow into a single-server service system. An arriving one
of type i; i = 1; 2, is handled by the server if it is free; otherwise, it
is blocked and routed to a separate type-i retrial (orbit) queue that at-
tempts to re-dispatch its jobs at its specific Poisson rate. The customer
in the orbit either attempts service again after a random time or gives
up receiving service and leaves the system after a random time. The
impatient customers, via certain mechanism, can be retained in the sys-
tem with some probability. In addition, the customer will decide either
to join the retrial group again for another service or leave the system
forever with some probability.

2010 Mathematics Subject Classification. 60K25; 68M20; 90B22

Keywords and phrases. Queueing system, call center, retrial queue,
abandonment, feedback.

1. Introduction

The study of retrial queues in queueing theory has attracted the attention
of many authors because of their wide applicability in web access, telephone
switching systems, telecommunication networks and computer networks,
and many daily life situations (Artelejo [2], Arivudainambi [1], Bouchen-
touf and Belarbi [4], Bouchentouf et al. [5, 6], and Boualem [3]).

In this work, we consider a Markovian retrial queueing system with two
classes of jobs and constant retrial, abandonment and feedback customers.
Two independent Poisson streams of jobs, S1 and S2, flow into a single-server
service system. The service system can hold at most one job. The arrival
rate of stream Si is αi, i; i = 1, 2, with α1+α2 = α. The required service time
of each job is independent of its type and is exponentially distributed with
mean 1

µ . If an arriving type-i job finds the (main) server busy, it is routed

to a dedicated retrial (orbit) queue from which jobs are re-transmitted at
an exponential rate. The rates of retransmissions may be different from the
rates of the original input streams. So, the blocked jobs of type i form a
type-i single-server orbit queue that attempts to retransmit jobs (if any) to
the main service system at a Poisson rate γi; i = 1, 2. This creates a system
with three dependent queues. The customer in the orbit either attempts
service again after a random time or gives up receiving service and leaves
the system after a random time at rate δi, i = 1, 2. The impatient customers

1

570



2RAMDANI HAYAT, AMINA ANGELIKA BOUCHENTOUF, LAHCENE YAHIAOUI, AND ABBES RABHI

may leave the system with probability θ. Via certain mechanism, they can
be retained in the system with probability θ′ = 1− θ.

After the customer is completely served , it will decide either to join the
retrial group again for another service with probability β or to leave the
system forever with probability β = 1− β.

2. Main Result

Let C(t) denotes the number of jobs in the main queue. C(t) takes the
values of 0 or 1. Let Ni(t) be the number of jobs in orbit queue i, i = 1, 2.
The Markov process (N1(t), N2(t), C(t)) : {t ∈ [0,+∞]} is irreducible on
the state-space {0, 1, ...} × {0, 1, ...} × {0, 1}. Such a network can serve as
a model for two competing job streams in a carrier sensing multiple access
system ’CSMA’. A Local Area Computer Network (LAN) can be an example
of CSMA. The main goal of this work is to give the necessary stability
condition of a retrial queueing system with two orbits, constant retrials,
abandoned and feedback customers. The main result is given in the following
proposition.

Proposition 2.1. The following condition

α(γ1 + θδ1)(γ2 + θδ2)

[α+ (β + 1)µ](γ1 + θδ1)(γ2 + θδ2)− αγ1γ2 − α1θδ1γ2 − α2θδ2γ1

×
(

1 +
αi

γi + θδi

)
< 1,

for i = 1, 2 and

[α+ (β + 1)µ](γ1 + θδ1)(γ2 + θδ2)− αγ1γ2 − α1θδ1γ2 − α2θδ2γ1 6= 0

is necessary for the stability of the system.
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Regime switching Merton model under general
discount function: Time-consistent strategies

Nour El Houda Bouaicha � Farid Chighoub y

February 27, 2021

Abstract

In this presentation, we revisit the equilibrium consumption�investment for Mer-
ton�s portfolio problem with a general discount function and a general utility function
in a Markovian framework. The coe¢ cients in our model, including the appreciation
rate and volatility of the stock, are assumed to be Markov modulated processes. The
investor receives a deterministic income, invests in risky assets and consumes continu-
ously. The objective is to maximize the terminal wealth and accumulated consumption
utility. The non-exponential discounting makes the optimal strategy adopted time-
inconsistent. Consequently, the Bellman�s optimality principle does no longer hold.
We formulate the problem in the game theoretic framework and by using a variational
technical approach, we derive the necessary and su¢ cient equilibrium condition. An
closed loop form of the equilibrium found for a set of special utility functions (loga-
rithme and power) enable us to discuss some interesting optimal investment strategies
that have not been revealed before in literature.

Keys words: Investment-Consumption Problem, Merton Portfolio Problem, Equilib-
rium Strategies, Non-Exponential Discounting, Stochastic Optimization.
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Abstract 

This work is concerned with the problem of selecting a suitable bandwidth, for the M-estimator of 

the robust regression function from left truncated and right censored data (LTRC), under strong 

mixing condition : After giving an extension of the asymptotic result of Nadaraya (1989, Theorem 1.2) 

into the context of robust regression estimator under dependence. We provide an asymptotic 

expression for the mean integrated squared error (MISE) of this estimator. As a consequence, a 

bandwidth selector based on iterative plug-in ideas is introduced. We also present a robust version 

of the Least Square Cross-Validation (RLSCV) bandwidth selection. A simulation study is investigated 

to examine the practical performance of both two methods. 
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Abstract

We consider optimal control of a new type of stochastic partial differential equa-
tions (SPDEs). The SPDEs have space interactions, in the sense that the dynamics of
the system at time t and position in space x also depend on the space-mean of values
at neighbouring points. This is a model with many applications, e.g. to population
growth studies and epidemiology. We prove the existence and uniqueness of solutions of
a class of SPDEs with space interactions, and we show that, under some conditions, the
solutions are positive for all times if the initial values are. Sufficient and necessary max-
imum principles for the optimal control of such systems are derived. Finally, we apply
the results to study an optimal vaccine strategy problem for an epidemic by modelling
the population density as a space-mean stochastic reaction-diffusion equation.

Keywords: SPDE; space interactions, epidemics; optimal vaccine strategy; maximum
principle.

1 Introduction

We are all faced with decisions, both our own and others. When considering decisions in
mathematics, we use the theory of optimal control. As we make many decisions under un-
certainty. Stochastic control theory provides us with a powerful tool to handle many cases,
like how to run a production optimally with respect to economic and environmental criteria,
when a factory should order new equipment, when a financial institution or an individ-
ual should buy and sell stocks in the financial market, how to find sustainable harvesting
strategies in agriculture and fishing, and how to deal optimally with epidemics that we are
interested in the current paper.

To be able to apply mathematical theory and methods to such problems, the situations
have to be put into a mathematical context. Usually the system we consider is not static,
but changes with time. This makes it natural to use dynamical systems as models.

In the present paper we will use a generalized stochastic heat equation with space inter-
actions as a model for epidemics. By space interactions we mean that the dynamics of the

1
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population density at a point x depends not only on its value and derivatives at x, but also
on the density values in a neighbourhood of x. For example, define G to be a space-averaging
operator of the form

G(x, ϕ) =
1

V (Kθ)

∫

Kθ

ϕ(x+ y)dy; ϕ ∈ L2(Rn), (1.1)

where V (·) denotes Lebesgue volume and

Kθ = {y ∈ Rn; |y| < θ}

is the ball of radius r > 0 in Rn centered at 0. Then

Y G(t, x) := G(x, Y (t, ·))

is the average value of Y (t, x+ ·) in the ball Kθ.
More generally, if we are given a nonnegative measure (weight) ρ(dy) of total mass 1, then
the ρ-weighted average of Y at x is defined by

Y ρ(t, x) :=

∫

D

Y (t, x+ y)ρ(dy).

We believe that by allowing interactions between populations at different locations, we get
a better model for population growth, including the modelling of epidemics. For example,
we know that COVID-19 is spreading by close contact in space.

x

Y (t, x)

D

2
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2 Solutions of SPDEs with space interactions,

and positivity

Fix t > 0, and let k ∈ N0 = {0, 1, 2, . . . , . . .} , α = (α1, α2, . . . , αn) = Nn
0 . For functions

f ∈ C∞(Rn), we let

|f |k,α = sup
x∈D,β≤α

(
1 + |x|k

) ∣∣∂βf (x)
∣∣ ; k ∈ N0; β = (β1, β2, ...βn), α = (α1, α2, . . . , αn) ∈ Nn

0 ,

denote the Schwartz family of seminorms, and we let S(Rn) be the set of f such that
|f |k,α <∞ for all k, α.

Let Y(t)
k,α denote the family of random fields Y (s, x) = Y (s, x, ω) , such that ||Y ||(t)k,α <∞

where

‖Y ‖(t)k,α = E
[
sup
s≤t

{
|Y (s, .)|2k,α

}] 1
2

,

and let Y(t) be the intersection (projective limit) of all the spaces Y(t)
k,α; k ∈ N0, α ∈ Nn

0 . We
can now prove the following:

Theorem 2.1 Let ξ ∈ S(Rn) and let h : [0, T ] 7→ R be bounded and deterministic.

• Then there exists a unique solution Y (t, x) ∈ Y(T ) of the following SPDE with space
interactions

Y (t, x) = ξ(x) +

∫ t

0

LY (s, x)ds

+

∫ t

0

Y (s, x)ds+

∫ t

0

h(s)Y (s, x)dB(s); t ∈ [0, T ].

• if ξ(x) ≥ 0 for all x ∈ Rn, we have Y (t, x) ≥ 0 for all (t, x) ∈ [0, T ]× Rn.

3 The optimization problem

We now give a general formulation of the problem we consider.
Let T > 0 and we assume that the state Y (t, x) at time t ∈ [0, T ] and at the point x ∈ D :=
D ∪ ∂D satisfies the generalised quasilinear stochastic heat equation:





dY (t, x) = AxY (t, x)dt+ b(t, x, Y (t, x), Y (t, ·), u(t, x))dt
+σ(t, x, Y (t, x), Y (t, ·), u(t, x))dB(t),

Y (0, x) = ξ(x); x ∈ D,
Y (t, x) = η(t, x); (t, x) ∈ (0, T )× ∂D.

(3.1)

The process u(t, x) = u(t, x, ω) is our control process, assumed to have values in a given
convex set U ⊂ Rk. We assume that u(t, x) is F-predictable for all (t, x) ∈ (0, T ) × D.

3
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We call the control process u(t, x) admissible if the corresponding SPDE with space-mean
dynamics (3.1) has a unique strong solution Y ∈ YT with values in a given set S ⊂ R. The
set of admissible controls is denoted by U .
The performance functional (cost) associated to the control u is assumed to have the form

J(u) = E
[ ∫ T

0

∫

D

f(t, x, Y (t, x), Y (t, ·), u(t, x))dxdt+

∫

D

g(x, Y (T, x), Y (T, ·))dx
]
; u ∈ U .

(3.2)

Problem 3.1 Find û ∈ U such that

J(û) = inf
u∈U

J(u). (3.3)

H(t, x, y, ϕ, u, p, q) := H(t, x, y, ϕ, u, p, q, ω) = f(t, x, y, ϕ, u) + b(t, x, y, ϕ, u)p

+ σ(t, x, y, ϕ, u)q. (3.4)

We associate to the Hamiltonian the following backward SPDE

dp(t, x) = −
[
A∗xp(t, x) + ∂H

∂y
(t, x) +∇∗ϕH(t, x)

]
dt+ q(t, x)dB(t), (3.5)

with boundary/terminal values

{
p(T, x) = ∂g

∂y
(x) +∇∗ϕg(x); x ∈ D,

p(t, x) = 0; (t, x) ∈ (0, T )× ∂D. (3.6)

Theorem 3.2 (Sufficient Maximum Principle) Suppose û ∈ U , with corresponding

Ŷ (t, x), p̂(t, x), q̂(t, x). Suppose the functions (y, ϕ) 7→ g(x, y, ϕ) and
(y, ϕ, u) 7→ H(t, x, y, ϕ, u, p̂(t, x), q̂(t, x)) are convex for each (t, x) ∈ [0, T ] × D. Moreover,
suppose that, for all (t, x) ∈ [0, T ]×D,

min
v∈U

H(t, x, Ŷ (t, x), Ŷ (t, ·), v, p̂(t, x), q̂(t, x))

= H(t, x, Ŷ (t, x), Ŷ (t, ·), û(t, x), p̂(t, x), q̂(t, x)).

Then û is an optimal control.

We now go to the other version of the necessary maximum principle which can be seen as
an extension of Pontryagin’s maximum principle to SPDE with space-mean dynamics. Here
concavity assumptions are not required . We consider the following:
Given arbitrary controls u, û ∈ U with u bounded, we define

uθ := û+ θu; θ ∈ [0, 1] .

4
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Note that, thanks to the convexity of U , we also have uθ ∈ U . We denote by Y θ := Y uθ and

by Ŷ := Y û the solution processes of (3.1) corresponding to uθ and û, respectively.

Define the derivative process Z(t, x) by the following equation, which is obtained by dif-
ferentiating Y θ(t, x) with respect to θ at θ = 0:





dZ(t, x) =

{
AxZ(t, x) +

∂b

∂y
(t, x)Z(t, x) + 〈∇ϕb(t, x), Z(t, ·)〉+

∂b

∂u
(t, x)u(t, x)

}
dt

+

{
∂σ

∂y
(t, x)Z(t, x) + 〈∇ϕσ(t, x), Z(t, ·)〉+

∂σ

∂u
(t, x)u(t, x)

}
dB(t),

Z(t, x) = 0; (t, x) ∈ (0, T )× ∂D,
Z(0, x) = 0; x ∈ D.

(3.7)

Theorem 3.3 (Necessary Maximum Principle) Let û(t, x) be an optimal control and Ŷ (t, x)
the corresponding trajectory and adjoint processes (p̂(t, x), q̂(t, x)). Then we have

∂Ĥ

∂u

∣∣∣∣∣
u=û

(t, x) = 0; a.s.
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SAMPLE SIZE CALCULATIONS IN PHASE II CLINICAL

TRIALS USING THE PREDICTION OF SATISFACTION

DESIGN.

ZOHRA DJERIDI AND HAYET MERABET

Abstract. Djeridi and Merabet [2] proposed a hybrid frequentist-Bayesian
approach to phase II clinical trials with binary outcomes and continuous
monitoring. The efficacy of an experimental treatment E is evaluated
based on data from an uncontrolled trial of E. The trial continues until
E is shown with high prediction of satisfaction to be promising or not
promising, or until a predetermined maximum sample size is reached.
In this paper, we study the design structure, describe sample size and
monitoring criteria and provide numerical guidelines for implementation.
We also examine the effects of intermittent monitoring on the design’s
properties. This study gives criteria from early termination of trials un-
likely to yield conclusive results, based on the predictive distribution of
the remaining interim analysis to evaluate the chance to continue the
trial til its term.
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SENSITIVITÉ DES PERFORMANCES DE L’ESTIMATEUR

À NOYAU D’UNE DENSITÉ CONDITIONNELLE AU

CHOIX DU PARAMÈTRE DE LISSAGE

LADAOURI NOUR EL HAYET AND CHERFAOUI MOULOUD

Abstract. Dans ce travail, nous nous sommes intéressés à l’analyse
de l’impact du choix du paramètre de lissage sur les performances (ISE
moyenne et le temps des calculs) de l’estimateur à noyau d’une den-
sité conditionnelle, f(y/x). Plus précisément, nous avons considéré le
choix du paramètre de lissage par la minimisation de l’ISE sous deux
différentes hypothèses, à savoir : H1 : les paramètres de lissage dans la
direction de X et de Y sont indépendant et H2 : le paramètre de lissage
dans la direction de X et le même que celui dans la direction de Y .

Pour ce faire, nous avons réalisé une application numérique com-
parative, basée sur des échantillons artificiels, sur deux exemples. Les
résultats des simulations obtenus dans notre application, sur des échan-
tillons de différentes tailles en utilisant le noyau Normal et le noyau
d’Epanechnikov pour la construction de l’estimateur de f(y/x), mettent
en relief l’impact des deux hypothèses H1 et H2 sur les performances
retenus.

Keywords and phrases. Estimation à noyau, densité conditionnelle,
erreur, simulation.

1. Introduction

Soit X et Y deux variables aléatoires uni-variées de densité jointe g(x, y);
et m est la densité marginal de X. On considère {(x1, y1); . . . ; (xn, yn)}
n−observations issues de la variable aléatoire (X,Y ). L’estimateur à noyau

f̂(y/x) = ĝ(x,y)
m̂(x) de la densité conditionnelle f(y/x), introduit initialement

par Rosenblatt en 1969 [7], est donné sous la forme suivante:

(1) f̂(y/x) =

1
nab

n∑
j=1

K(
x−xj
a )K(

y−yj
b )

1
na

n∑
j=1

K(
x−xj
a )

=
1

b

n∑

j=1

Wj,a(x)K

(
y − yj
b

)
,

avec K est un noyau sur R, a > 0 est le paramètre de lissage dans la
direction de X et b > 0 est le paramètre de lissage dans la direction de Y .
De plus, afin d’assurer la convergence de cet estimateur les deux paramètres
de lissage doivent vérifer les conditions: a, b→ 0 et nab→∞ lorsque n→∞
(pour plus de détails voir [4]).

Dans la littérature une autre version simplifiée de (1) a été proposée. En
effet, sous l’hypothèse que les deux paramètres de lissage a et b, respec-
tivement dans la direction de X et dans la direction de Y , sont les mêmes
(h = a = b) l’expression (1) peut être réécrite sous sa forme simplifier donnée
par:

1

581



2 N.E.H. LADAOURI AND M. CHERFAOUI

(2) f̂(y/x) =

1
nh2

n∑
j=1

K
(
x−xj
h

)
K
(
y−yj
h

)

1
nh

n∑
j=1

K
(
x−xj
h

) =
1

h

n∑

j=1

Wj,h(x)K

(
y − yj
h

)
,

où K est un noyau sur R et h est le paramètre de lissage. De plus, pour
que l’estimateur soit convergent le paramètre de lissage doit satisfaire les
conditions suivantes: h → 0 et nh2 → ∞ lorsque n → ∞ (pour plus de
détails voir [9]).

Il est claire, d’après les deux expressions (1) et (2), que la mise en œuvre
de cette technique nécessite de fixer le noyau K et le(s) paramètre(s) de
lissage. Pour le noyau K, les choix plus communs du noyau sont définis en
termes de fonction de densité de probabilité univariée et unimodale, ce qui
cöıncide avec les choix qu’on réalise dans l’estimation d’une densité classique.
Tandis que pour le choix du paramètre de lissage, une petite inspection
de la littérature nous permet de constater qu’il existe deux catégories de
procédures de sélection, à savoir : celle où on considère l’estimateur définie
dans (1) (exemple de [4, 1]) et celle où on impose l’hypothèse d’égalité des
paramètres de lissage a et b (a = b = h) respectivement de la direction
de x et de la direction de y, c’est-à-dire celle qui regroupe les technique de
sélection spécifiques à l’estimateur définie dans (2) (exemple de [9]).

Dans le présent travail, nous avons proposé d’analyser et de comparer
numériquement les performances des deux estimateurs de f(y|x) définis par
(1) et (2).

Le reste du document est organisé comme suit : Dans la section 2, nous
allons aborder brièvement le problème du choix du noyau et des paramètres
de lissage dans le cadre d’estimation à noyau d’une densité conditionnelle
univarié. Avant de conclure dans la section 4, nous allons présenter dans
la section 3 l’application numérique réalisée sur des échantillons simulés, les
résultats numériques et graphiques obtenus ainsi que la discussion de ces
derniers.

2. Choix du noyau et des paramètres de lissage

Le problème du choix du noyau K, que ce soit pour l’estimateur (1) ou
l’estimateur (2), reste le même que dans le cas d’estimation d’une densité
unimodèle. De ce fait, le choix du noyau K doit seulement être adapté au
support de la densité [8, 2, 3, 6, 5].

Les paramètres de lissage optimaux peuvent être obtenus par la différen-
tiation de l’expression du MISE associée à l’estimateur par rapport à a et b
dans le cas de l’estimateur (1) et par rapport à h dans le cas de l’estimateur
(2) et en égalisant à zéro les dérivées obtenues.

Dans le cas de l’estimateur (1), Hyndman et al. [4] ont montré que le cou-
ple (a, b) optimal au sens du MISE est la solution du système d’équations
suivant:

(3)

{
− c1
n + c2b

n + 4c3a
5b+ 2c5a

3b3 = 0;
− c1
n + 4c4ab

5 + 2c5a
3b3 = 0;

582



ESTIMATION À NOYAU D’UNE DENSITÉ CONDITIONNELLE 3

où c1, c2, c3, c4 et c5 sont des constantes qui dépendent du noyau K,
la densité conditionnelle f(y/x) et de la densité marginal m(x), et qui sont
donnés par :

(4)





c1 =
∫
R2(K)dx,

c2 =
∫ ∫

R(K)f2(y/x)dydx,

c3 =
∫ ∫ σ4

Km(x)
4

{
2m
′(x)

m(x)
∂f(y/x)
∂x + ∂2f(y/x)

∂x2

}2
dydx,

c4 =
∫ ∫ σ4

Km(x)
4

{
∂2f(y/x)
∂y2

}2
dydx,

c5 =
∫ ∫ σ4

Km(x)
2

{
2m
′(x)

m(x)
∂f(y/x)
∂x + ∂2f(y/x)

∂x2

}{
∂2f(y/x)
∂y2

}
dydx,

avec R(g) =
∫
g2(x)dx et σ2

K est la variance du noyau K.
De plus, ils ont montré également que la solution du système (3) est

donnée par:

(5)





a∗ = c
1/6
1

{
4
(
c53
c4

)1/4
+ 2c5

(
c3
c4

)3/4
}−1/6

n−1/6;

b∗ =
(
c3
c4

)1/4
a∗,

avec les constantes c1, c2, c3, c4 et c5 sont donné dans (4).
A partir de l’expression (5), on remarque que dans le cadre pratique a∗

et b∗ ne sont pas exploitables et ceci le fait que la quantification de ces
derniers dépendent des fonctions inconnues, f et m à travers les constantes
ci, i = 1, 5. Ci-dessous les deux techniques de sélection du paramètre de
lissage les plus utilisées dans la pratique.

(1) La règle de référence: La technique de règle de référence, pro-
posée initialement par Silverman [8] dans le cadre d’estimation de
densité unimodèle, vise à substitué les fonctions inconnues inter-
venant dans la définition du paramètre de lissage optimal par des
fonctions connues afin qu’on puisse quantifier le paramètre de lis-
sage optimal.

Dans le cadre d’estimation à noyau d’une densité conditionnelle
la méthode de règle de référence associée à l’estimateur (1) a été
considéré par Bashtannyk et Hyndman [1]. Les auteurs ont proposé
de remplacer la densité conditionnelle f(y/x) dans l’expression (4)
par une densité d’une loi normale de moyenne r(x) = u + vx et
d’écart type σ(x) = p + qx avec v 6= 0. Concernant la densité
marginale m(x), les auteurs ont proposé de substituer cette fonction
dans (4), dans un premier temps, par une loi normale ayant une
variance constante et, dans un second temps, par une loi uniforme
définie sur [α, β].

A base d’une étude de simulation Bashtannyk et Hyndman [1] ont
montré que cette technique est robuste et elle fournie des résultats
raisonnables, même pour des densités qui ne sont pas des distribu-
tions normale.

(2) Validation croisée:
Le principe de cette technique est d’estimer une performance (ISE,

MISE, vraisemblance,...) associée à l’estimateur considéré par le
principe de validation croisée et le paramètre de lissage dans ce cas et
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4 N.E.H. LADAOURI AND M. CHERFAOUI

celui qui optimise (minimise ou maximise, selon le critère considéré)
l’estimateur obtenu.

Dans [9] l’auteur à considérer le choix du paramètre de lissage,
associé à l’estimateur (2), par la technique de validation croisée.
L’auteur a montré que si on opte pour la minimisation du critère
ISE par l’approche validation croisée alors la sélection du paramètre
de lissage optimal consiste à déterminer la valeur de h de minimiser
le critère suivant:

(6)

CV (h) =
1

n

n∑

i=1

W (Xi)

∫ (
g−ih (Xi, y)

m−ih (Xi)

)2

W
′
(y)dy− 2

n

n∑

i=1

g−ih (Xi, Yi)

m−ih (Xi)
W (Xi)W

′
(Yi).

où,

ĝ−i(x, y) = 1
(n−1)h2

n∑
j 6=i

K
(
x−Xj

h

)
K
(
y−Yj
h

)
,

m̂−i(x) = 1
(n−1)h

n∑
j 6=i

K
(
x−Xj

h

)
.

3. Performances numérique de l’estimateur de f(Y/X)

L’objectif de la présente section est de mettre en évidence numériquement
la qualité des estimations (1) et (2) au sens de l’ISE moyenne ainsi que au
sens du temps moyen de calcul nécessaire pour la mise en oeuvre de ces deux
estimateurs.

Afin de distinguer les deux estimateurs en question dans le reste du présent
document nous allons adopter les notations f̂ab et f̂h pour désigner respec-
tivement l’estimateur donné dans (1) et (2).

3.1. Description des paramètres de l’application. Pour répondre à
notre objectif nous avons implémenté un simulateur sous Matlab dont ses
principales étapes sont :

(1) Générer N échantillons (X,Y ) de taille n d’une loi cible.
(2) Calculer (a∗, b∗) et h∗ qui minimisent les ISE moyennes associées aux

deux estimateurs.
(3) Calculer f̂ab et f̂h et comparer leurs performances.

Pour réaliser ces étapes, pour des raisons calculatoire nous avons pro-
posé de discrétiser l’ISE moyenne. Ainsi, en prenant en considération les N
échantillons générés, l’expression du ISE moyenne sera approchée par:

(7) AISE =
∆

nN

N∑

l=1

J∑

j=1

n∑

i=1

[
f̂(y

′
j/Xi)− f(y

′
j/Xi)

]2
,

où y
′

=
(
y
′
1, y

′
2, ..., y

′
J

)
est un vecteur de points équidistants dans l’espace

de Y et ∆ = y
′
j+1 − y

′
j , ∀j ∈ {1, 2, ..., J − 1}.

Par conséquent, les estimations des paramètres de lissage optimaux au
sens du ISE moyenne correspondent dans ce cas aux quantités minimisant
l’expression (7).
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Pour l’application numérique nous avons repris les deux exemples présen-
tés par Bashtannyk et Hyndman dans [1] et qui sont définis comme suit:

Modèle 1:

(8) y = 10 + 5X + ε,

où X et ε sont deux variables aléatoires issues respectivement
N (10, 9) et N (0, 100) avec N (µ, σ2) désigne une loi normale de
moyenne µ et de variance σ2. Pour ce modèle, il est facile de montré
que la densité de la variable aléatoire Y sachant X est définie par:

(9) f(y/x) =
1

10
φ

(
y − 10− 5x

10

)
,

avec φ(.) est la densité d’une distribution normale centrée réduite.
Modèle 2:

(10) y = 2 sin(πX) + ε,

où X et ε sont deux variables aléatoires tel que X suit la loi
uniforme sur [0, 2] et εi/Xi = WiUi + (1 −Wi)Vi avec Wi est une
variable aléatoire binaire équiprobable (P (Wi = 0) = P (Wi = 1) =
0.5) et Ui est une variable aléatoire issue d’une loi N (Xi, 0.09) et
Vi est une variable aléatoire qui suit N (0, 0.09). Dans ce deuxième
modèle, la densité de la variable aléatoire Y sachant X est définie
par:

(11) f(y/x) =
1

0.6
φ

(
y − 2 sin(πx)

0.3

)
+

1

0.6
φ

(
y − 2 sin(πx)− x

0.3

)
,

avec φ(.) est la densité d’une distribution normale centrée réduite.

Pour le reste des paramètres de l’application nous avons considéré ce qui
suit:

• Le noyau K: K ∈ {Gaussien, Epanechnikov }.
• La discrétisation de y: y

′
varie entre −10 et 130 avec un pas 140/24

(ie J = 25) dans le cas Modèle 1, et y
′

varie entre −2.5 et 2.5 avec
un pas 5/24 (ie J = 25) dans le cas Modèle 2.
• La taille des échantillon: n ∈ {50; 100; 150; 200; 250}.
• Le nombre d’échantillons: N = 50.

3.2. Résultats numérique et graphique.
Les résultats numériques obtenus dans le cadre du premier modèle sont
rangés dans la table 1 et sont présentés dans les Figures 1 et 2. Tandis
que les résultats numériques obtenus dans le cadre du deuxième modèle sont
rangés dans la table 2 et sont présentés dans les Figures 3 et 4.
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6 N.E.H. LADAOURI AND M. CHERFAOUI

Table 1: Variation du AISE et du temps de calcul en fonction de n, cas du

premier modèle.

a 6= b a = b

K n (a∗, b∗) ISE temps (mn) h∗ ISE temps (mn)

50 (0.9351, 7.3807) 0.0028 19.2417 2.3412 0.0071 5.2667

100 (0.8152, 6.5415) 0.0022 41.0333 1.9335 0.0055 9.7233
Gaussien 150 (0.7866, 6.0262) 0.0018 60.5250 1.7712 0.0045 16.8017

200 (0.7490, 5.6001) 0.0015 79.3617 1.6063 0.0037 25.1150

250 (0.7151, 5.4174) 0.0013 102.5750 1.5425 0.0034 34.8233

50 (0.8877, 7.1378) 0.0029 2.3678 2.1058 0.0077 0.7190

100 (0.8024, 6.1525) 0.0019 5.4912 1.7854 0.0055 1.7917
Epanechnikov 150 (0.7744, 5.6500) 0.0018 8.0060 1.5944 0.0045 4.5634

200 (0.7299, 5.3290) 0.0015 14.5177 1.5447 0.0040 6.0449

250 (0.7054, 5.0261) 0.0013 18.5651 1.4397 0.0034 7.2891

Table 2: Variation du AISE et du temps de calcul en fonction de n, cas du
deuxième modèle.

a 6= b a = b
K n (a∗, b∗) ISE temps(mn) h∗ ISE temps(mn)

50 (0.0669, 0.3714) 0.1432 12.0698 0.1847 0.2152 5.1789

100 (0.0540, 0.3109) 0.1114 22.1744 0.1443 0.1804 13.8123

Gaussien 150 (0.0478, 0.2809) 0.0953 40.6394 0.1229 0.1623 19.1573
200 (0.0439, 0.2576) 0.0816 60.7817 0.1081 0.1433 34.0199

250 (0.0408, 0.2471) 0.0723 82.7658 0.1013 0.1338 38.7507

50 (0.0631, 0.3339) 0.1426 2.3489 0.1733 0.2295 1.3241

100 (0.0504, 0.2930) 0.1101 10.1727 0.1360 0.1926 4.0519
Epanechnikov 150 (0.0442, 0.2658) 0.0934 20.6833 0.1136 0.1708 7.7735

200 (0.0408, 0.2420) 0.0798 28.4868 0.1006 0.1529 14.6891

250 (0.0385, 0.2334) 0.0705 39.6346 0.0904 0.1407 18.5206
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Figure 1. Variation du AISE moyen en fonction de n, cas
du premier modèle.
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Figure 2. Variation du temps de calcul en fonction de n,
cas du premier modèle.
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Figure 3. Variation du AISE moyen en fonction de n, cas
du deuxième modèle.

50 75 100 125 150 175 200 225 250
0

10

20

30

40

50

60

70

80

90

la taille de l’échantillon (n)

Te
m

ps
 d

e 
ca

lc
ul

 (e
n 

m
in

ut
es

)

Cas du Noyau Gaussien

 

 
Cas: Premier estimateur
Cas: Deuxième estimateur

50 75 100 125 150 175 200 225 250
0

2

4

6

8

10

12

14

16

18

20

la taille de l’échantillon (n)

Te
m

ps
 d

e 
ca

lc
ul

 (e
n 

m
in

ut
es

)

Cas du Noyau Epanechnikov

 

 
Cas: Premier estimateur
Cas: Deuxième estimateur

Figure 4. Variation du temps de calcul en fonction de n,
cas du deuxième modèle.

3.3. Discussion des résultats. En tenant compte des résultats numériques
et graphiques précédents on constate que:

• Les deux estimateurs convergent en fonction de la taille de l’échantillon
n.
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8 N.E.H. LADAOURI AND M. CHERFAOUI

• Les estimateurs les plus performants au sens du AISE, dans le cas
des deux modèles, sont obtenus lorsque nous considérons l’estimateur
défini dans (1) et ceci quelque que soit la taille de l’échantillon et le
noyau utilisé pour la construction de cet estimateur.
• La qualité des estimations au sens du critère retenus selon le noyau

utilisé pour la construction de l’estimateur dépend du modèle et de
l’estimateur considérés. En effet, dans le cas du premier modèle
le choix du noyau pour la construction de l’estimateur (1) ou de
l’estimateur (2) parait qu’il n’est pas d’une grande importance le
fait que les deux noyaux (Normal et Epanechnikov) nous fournis des
estimateurs pratiquement ayant le même AISE. Par contre, dans le
deuxième modèle, si nous considérons l’estimateur défini dans (1)
il est préférable de le construire via le noyau Epanechnikov et si
nous considérons l’estimateur défini dans (2) alors dans ce cas il est
préférable d’utiliser le noyau Normal.
• Le temps de calcul est plus considérable dans le cas du premier esti-

mateur que le deuxième.
• Dans certains cas, l’investissement d’un temps de calcul pour améliorer

la qualité de l’estimation n’est pas intéressant, car la contribution
d’un temps supplémentaire dans la qualité de l’estimateur est très
minime. En effet, par exemple, lorsque la taille de l’échantillon
n = 1000 on constate clairement sur la figure 1 (à gauche) et la
figures 2 (à gauche) que le gain d’une précision d’ordre 10−3 au sens
de l’AISE pour le premier estimateur par rapport au deuxième esti-
mateur, nécessite un temps de calcul supplémentaire dépassant cinq
heures, ce qui est très fastidieux.
• Le temps de calcul lors de l’utilisation du noyau normal est plus con-

sidérable que dans le cas d’utilisation du noyau d’Epanechnikov ceci
se justifier par la longueur de leurs support. Mais, les AISE moyennes
engendrés par ces deux noyaux sont pratiquement les mêmes.

4. Conclusion

Dans ce travail à travers d’une application numérique, basée sur des échan-
tillons simulés, nous avons mis en relief l’effet du choix de paramètre de lis-
sage dans l’estimation à noyau d’une densité conditionnelle sous l’hypothèse
d’égalité des deux paramètres de lissage de la direction de x et de la direction
y (a = b) et le cas contraire (a 6= b).

Les résultats numériques et graphiques obtenus dans cette étude indiquent
que les estimateurs les moins performants au sens du ISE moyenne sont
obtenus dans le cadre d’hypothèse d’égalité des paramètres de lissage dans la
direction de X et la direction de Y . Mais cette hypothèse s’avère intéressante
lorsque la taille de l’échantillon est relativement grande le fait qu’un nous
fournit dans un temps de calcul raisonnable des estimateurs pratiquement
de même performances (au sens de l’ISE) que ceux obtenus lorsque cette
hypothèse est niée.
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STABILITY OF CONTROLLED STOCHASTIC

DIFFERENTIAL EQUATIONS DRIVEN BY G-BROWNIAN

MOTION

MERIYAM DASSA∗ AND ADEL CHALA∗

Abstract. In our proposed presentation, we will study the stability of
controlled stochastic differential equations driven by G-Brownian mo-
tion (G-SDEs in short) with respect to the control variable by using
the convex perturbation method, in which the set of admissible con-
trols is convex. We aim to introduce three estimation’s lemmas about
the solution of controlled SDE within the framework of G-expectation.
Lastly, we give the global form of the variational inequality, which is the
principal tool to establish the G-stochastic maximum principle.

2010 Mathematics Subject Classification. 93E20, 60G46, 93E10,
49K45, 49K35.

Keywords and phrases. Sublinear expectation, G-Brownian motion,
G-expectation, G-stochastic differential equation, Variational inequality.

1. The problem

How to measure uncertain quantities is an important problem. In 1953,
when the Allais’s paradox was introduced, the economists discovered that
the theory of ”expected utility” based on linear mathematical expectation
was posed many questions. A question then arises: can we find a new
theory that can be a natural generalization of a linear expectation? In par-
ticular, preserving, as much as possible, the properties of the classical linear
expectation. As an answer to this question, Peng proposed a new notion
of nonlinear expectation which is more dynamic, called sublinear expecta-
tion. As a typical case, Peng introduced G-expectation and a new type of
Brownian motion called G-Brownian motion. After that the corresponding
stochastic calculus of Itô’s type was established. The existence and unique-
ness of the solution of SDE driven by G-Brownian motion can be proved
in a way parallel to that in the classical theory. But the stochastic optimal
control within the framework of G-expectation becomes a challenging and
fascinating problem.
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TESTS OF INDEPENDENCE AND GOODNESS-OF-FIT

FOR COPULA MODELS WITH BIVARIATE CENSORED

DATA

MOHAMED BOUKELOUA

Abstract. In a semiparametric copula model, we assume that the
copula C of the studied distribution belongs to a parametric family
{Cθ, θ ∈ Θ} (Θ ⊂ Rd) and that the margins are completely unknown.
In this context, [3] proposed tests of independence of the margins based
on the theory of divergences. The advantage of this approach is the
fact that it works whatever the value of θ corresponding to the mar-
ginal independence is an interior or a boundary point of Θ. In the
present work, we extend this approach to the case of bivariate censored
data. So, we construct tests of independence and we establish the as-
ymptotic distributions of the statistics of these tests under the null and
the alternative hypotheses. We also propose Cramér-Von-Mises type
goodness-of-fit tests for the parametric copula families and we study the
asymptotic behavior of the statistics of these tests under the null and
the alternative hypotheses.

2010 Mathematics Subject Classification. 62H15, 62N01, 62N03.

Keywords and phrases. Copulas, Tests of independence, Goodness-
of-fit tests, Bivariate censored data.

This work is published in ”Communications in Statistics - Theory and
Methods” (Boukeloua 2020).

1. Empirical copula for censored data

Let X = (X1, X2) be a couple of positive real random variables (r.r.v.),
with a joint distribution function F and continuous margins F1 and F2, and
let R = (R1, R2) be a couple of positive censoring r.r.v. independent of
X. The available observation consists in a sample (Z1i, Z2i, δ1i, δ2i)1≤i≤n of
independent copies of the vector (Z1, Z2, δ1, δ2), where Zj = min(Xj , Rj)
and δj = 1{Xj≤Rj}, j ∈ {1, 2} (1{.} denotes the indicator function).

From now on, for any random variable V , FV , SV and TV denote, re-
spectively, the distribution function, the survival function and the upper
endpoint of the support of V . Furthermore, for any right continuous func-
tion H : R → R, we set H(x−) = lim

ε
>→0
H(x − ε) the left-hand limit of H

at x when it exists. We assume that the copula C of X is twice continuously
differentiable on [0, 1]2, and that TXj ≤ TRj for j ∈ {1, 2} which ensures that
the variables X1 and X2 can be observed on the whole of their supports.

In the present work, we study the following bivariate censoring models.
Model I:
In this model, we assume that SR can be written as SR(t1, t2) = CR(SR1(t1), SR2(t2)),

1
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where CR is a known survival copula.1 This model was studied by [6]. In
this case, the empirical distribution function

F̃n(t1, t2) =
1

n

n∑

i=1

1{X1i≤t1,X2i≤t2}

can not be used to estimate F (t1, t2) since X1 and X2 are not observed.
Remarking that for any t1, t2 ∈ R

E
(
δ1δ2g(Z1, Z2)1{Z1≤t1,Z2≤t2}

)
= E

(
1{X1≤t1,X2≤t2}

)
= F (t1, t2),

where g(z1, z2) = P (R1 ≥ z1, R2 ≥ z2)−1, [6] proposed to replace 1{X1i≤t1,X2i≤t2}
by the observed quantity

δ1iδ2i

CR

(
ŜR1(Z1i), ŜR2(Z2i)

)1{Z1i≤t1,Z2i≤t2},

where

ŜR1(t) =
∏

k/Z′1k≤t

(
1−

∑n
j=1 1{Z1j=Z′1k,δ1j=0}∑n

j=1 1{Z1j≥Z′1k}

)

((Z ′1k)1≤k≤m, (m ≤ n) being the distinct values of (Z1i)1≤i≤n) is the Kaplan-

Meier estimate of SR1 , and ŜR2 is the Kaplan-Meier estimate of SR2 , defined
in the same way. This leads to the following estimate of F (t1, t2).

F (I)
n (t1, t2) =

1

n

n∑

i=1

δ1iδ2i

CR

(
ŜR1(Z1i), ŜR2(Z2i)

)1{Z1i≤t1,Z2i≤t2}.

Denote by X1 (resp. X2) the support of X1 (resp. X2) and denote by l∞ (A)
the space of all bounded real-valued functions defined on the nonempty set
A. Applying Theorem 3.4. of [6] to the class of functions F = {(t1, t2) 7→
1[0,x1]×[0,x2](t1, t2), x1 ∈ X1, x2 ∈ X2}, we deduce that the process

√
n(F

(I)
n −

F ) converges weakly in l∞ (X1 ×X2), to a centered Gaussian process, under
the following assumption.
Assumption I. We assume that
I.1. The first and the second partial derivatives of CR are bounded on [0, 1]2.
Moreover, CR(u1, u2) 6= 0 for u1 6= 0 and u2 6= 0.
I.2. There exist α1, α2 ∈ [0, 1] such that CR(u1, u2) ≥ uα1

1 uα2
2 .

I.3. ∫
dF (t1, t2)

CR(SR1(t1), SR2(t2))
<∞

and for some a > 0 arbitrary small

∫ [
S1−α1
R1

(t1)K1/2+a
1 (t1)

Sα2
R2

(t2)
+
S1−α2
R2

(t2)K1/2+a
2 (t2)

Sα1
R1

(t1)

]
dF (t1, t2) <∞,

where

Ki(t) =

∫ t

0

dFRi(u)

SRi(u)2SXi(u)
, i ∈ {1, 2}.

1The survival copula CR of R is defined by CR(u1, u2) = u1+u2−1+C∗(1−u1, 1−u2),
where C∗ is the copula function of R.
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Model II:
In this model, we assume that only X1 is censored, in other words R2 =∞
almost surely (a.s.). This situation was studied by [7] who proposed the
following estimate of F .

F (II)
n (t1, t2) =

1

n

n∑

i=1

δ1i

ŜR1(Z−1i)
1{Z1i≤t1,Z2i≤t2}.

This model is a particular case of model I for CR(u1, u2) = u1u2 (the inde-

pendence copula). So, the weak convergence of F
(II)
n follows from Theorem

3.4. of [6] under the following assumption.
Assumption II. We assume that

∫
dF (t1, t2)

SR1(t−1 )
<∞

and for some a > 0 arbitrary small
∫ [∫ t1

0

dFR1(u)

SR1(u−)2SX1(u)

]1/2+a

dF (t1, t2) <∞.

Notice that assumptions I.1 and I.2 hold for the independence copula, tak-
ing α1 = α2 = 1.
Model III:
In this model, we assume that the difference between the censoring variables
is observed, i.e., R2 = R1 + ε, where ε is an observed r.r.v., independent of
R1. This model was studied in [5]. Remarking that R1 is right censored by
max(X1, X2 − ε), and that the censorship indicator is η = 1− δ1δ2, [5] used
the same idea of [6], presented in model I, to propose the following estimate
of F .

F (III)
n (t1, t2) =

1

n

n∑

i=1

δ1iδ2i

S̃R1(max(Z1i, Z2i − εi)−)
1{Z1i≤t1,Z2i≤t2},

where S̃R1 is the Kaplan-Meier estimate of SR1 constructed from the sample
(min(R1i,max(X1i, X2i − εi)), ηi)1≤i≤n.
Under the assumption
Assumption III. We have E

[
SR1(max(X1, X2 − ε)−)−1

]
< ∞ and for

some a > 0 arbitrary small, E[C1/2+a(max(X1, X2−ε)−)SR1(max(X1, X2−
ε)−)−1] <∞, where

C(t) =

∫ t

0

dFR1(u)

SR1(u−)2SX1(u)
,

Theorem 3.1. of [5], applied to F , entails that the process
√
n(F

(III)
n − F )

converges weakly in l∞(X1 × X2) to a centered Gaussian process. Notice
that under assumption III, the class F satisfies assumption 2 of [5].

By analogy with the case of complete data, [4] proposed to estimate C by

C(j)
n (u1, u2) = F (j)

n

((
F

(j)
1n

)−1
(u1),

(
F

(j)
2n

)−1
(u2)

)
, (u1, u2) ∈ [0, 1]2,

where F
(j)
1n (t1) = limt2→∞ F

(j)
n (t1, t2) and F

(j)
2n (t2) = limt1→∞ F

(j)
n (t1, t2), for

j ∈ {I, II, III} depending on the considered model.
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Thanks to Theorem 2 of [4], we have for model (j) and under assumption

(j), the censored empirical copula process
√
n(C(j)

n − C) converges weakly,

in l∞([0, 1]2), to a tight, centered Gaussian process G(j). Otherwise, C(j)
n

being a left continuous function, it would be better to use the following right
continuous empirical copula.

C(I)
n (u1, u2) =

1

n

n∑

i=1

δ1iδ2i

CR

(
ŜR1(Z1i), ŜR2(Z2i)

)1{F (I)
1n (Z1i)≤u1,F (I)

2n (Z2i)≤u2}, (u1, u2) ∈ [0, 1]2,

for model I. In the case of models II and III, the empirical copulas C
(II)
n

and C
(III)
n can be defined in the same way, using the appropriate weights.

Remark that for j ∈ {I, II, III}

sup
(u1,u2)∈[0,1]2

∣∣∣C(j)
n (u1, u2)− C(j)

n (u1, u2)
∣∣∣ = OP

(
1

n

)

(see [4]).

So, the process
√
n(C

(j)
n −C) converges weakly, in l∞([0, 1]2), to the limiting

process G(j).

2. Semiparametric copula models

In a semiparametric copula model, we assume that the copula C(u1, u2)
has a parametric form Cθ(u1, u2), θ ∈ Θ ⊂ Rd and that the margins F1

and F2 are completely unknown. Let cθ(u1, u2) = ∂2

∂u1∂u2
Cθ(u1, u2) be the

density of Cθ(u1, u2) with respect to the Lebesgue measure on R2, and let
θT and θ0 denote respectively the true value of the parameter θ and the
value that corresponds to the independence of the marginals, i.e., the value
that satisfies Cθ0(u1, u2) = u1u2 (when it exists). To estimate θT , we use
the theory of divergences and duality which we recall in the sequel. Let ϕ
be a strictly convex, twice differentiable function defined from R to [0,+∞]
such that its domain domϕ = {x ∈ R such that ϕ(x) < ∞} is an interval
with endpoints aϕ < 1 < bϕ (which may be bounded or not, open or not).
We assume that ϕ(1) = 0 and that ϕ is closed (i.e., if aϕ or bϕ is finite,
then ϕ(x) → ϕ(aϕ), when x ↓ aϕ, and ϕ(x) → ϕ(bϕ), when x ↑ bϕ). For
any probability measures P and Q defined on a measurable space (E,B),
the ϕ-divergence between Q and P , when Q is absolutely continuous with
respect to P , is given by

Dϕ(Q,P ) =

∫

E
ϕ

(
dQ

dP
(x)

)
dP (x).

Examples of divergence functions ϕ can be found in [1] and [3].
Applying a dual representation result of [1], [3] showed that the ϕ-divergence

between Cθ0 and CθT can be written as follows.

Dϕ(θ0, θT ) =

∫

I
ϕ

(
cθ0(u)

cθT (u)

)
dCθT (u)

= sup
θ∈Θ

{∫

I
ϕ′
(

1

cθ(u)

)
du1du2 −

∫

I

[
1

cθ(u)
ϕ′
(

1

cθ(u)

)
− ϕ

(
1

cθ(u)

)]
dCθT (u)

}
,
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whenever ∫

I

∣∣∣∣ϕ′
(

1

cθ(u)

)∣∣∣∣ du1du2 <∞ for all θ ∈ Θ,

where I = (0, 1)2 and u = (u1, u2). Moreover, the sup is unique and is
reached at θ = θT .
So, Dϕ(θ0, θT ) and θT can be estimated by analogy with the case of complete
data ([3]), by the following plug-in estimates.

D̂(j)
ϕ (θ0, θT ) = sup

θ∈Θ

∫

I
m(θ, u) dC(j)

n (u)

and

θ̂(j)
ϕ = arg sup

θ∈Θ

{∫

I
m(θ, u) dC(j)

n (u)

}
,

where

m(θ, u) =

∫

I
ϕ′
(

1

cθ(u)

)
du1du2 −

{
1

cθ(u)
ϕ′
(

1

cθ(u)

)
− ϕ

(
1

cθ(u)

)}

=:

∫

I
K1(θ, u)du1du2 −K2(θ, u),

for j ∈ {I, II, III} depending on the considered bivariate censoring model.
If θT does not belong to the interior of Θ, this estimate may not be

asymptotically normal. Therefore, it is not easy to test the independence
hypothesis H0 : θT = θ0 when θ0 is a boundary point of Θ. To remedy this
situation, we enlarge the parameter space Θ, as in [3], into a wider space
Θe ⊃ Θ, so that θ0 lies in the interior of Θe. The space Θe is defined by

Θe =

{
θ ∈ Rd such that

∫

I

∣∣∣∣ϕ′
(

1

cθ(u)

)∣∣∣∣ du1du2 <∞
}
,

and we redefine D̂
(j)
ϕ (θ0, θT ) and θ̂

(j)
ϕ as follows.

D̂(j)
ϕ (θ0, θT ) = sup

θ∈Θe

∫

I
m(θ, u) dC(j)

n (u)

and

θ̂(j)
ϕ = arg sup

θ∈Θe

{∫

I
m(θ, u) dC(j)

n (u)

}
.

3. Tests of independence

To test the hypothesis of marginal independence H0 : θT = θ0 against the
alternative H1 : θT 6= θ0, we propose, by analogy with the case of complete
data ([3]), the following test statistics.

T (j)
ϕ,n =

2n

ϕ′′(1)
D̂(j)
ϕ (θ0, θT ), j ∈ {I, II, III}.

We will establish the asymptotic distributions of T
(j)
ϕ,n under H0 as well as

under H1. For that, we need the following assumptions.

Denote by ∂m
∂θ (., u) and ∂2m

∂θ2
(., u), the gradient and the Hessian matrix of

m(., u), respectively.

H1: The functions u ∈ I 7→ ∂m
∂θ (θT , u) and u ∈ I 7→ ∂2m

∂θ2
(θT , u) are

continuous from above and with discontinuities of the first kind.
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H2: There exists a neighborhood N ⊂ Θe of θT , such that the first
and the second partial derivatives with respect to θ of K1(θ, u) are
dominated on N by some integrable functions with respect to the
Lebesgue measure on R2.

H3: The matrix S = −
∫
I(∂

2/∂θ2)m(θT , u) dCθT (u) is non singular.
H4: The function u ∈ I 7→ m(θT , u) is continuous from above and with

discontinuities of the first kind.

Theorem 1. For model (j), suppose that assumptions (j) and H1–H3 are
satisfied.

i) Under H0, the statistic T
(j)
ϕ,n converges in distribution to Y >Y , where

Y is a centered Gaussian vector, with covariance matrix (Σ1/2)>M (j)Σ1/2,

where Σ = S−1 and Σ = Σ1/2
(
Σ1/2

)>
is the Cholesky decomposition

of Σ.
ii) Under H1 and if assumption H4 holds, then

√
n
(
D̂(j)
ϕ (θ0, θT )−Dϕ(θ0, θT )

) D−→
∫

I
m(θT , u) dG(j)(u),

which is a centered Gaussian random variable.

In view of part i), the critical region of the test of independence, at level

α ∈ (0, 1), is CR = {T (j)
ϕ,n > q1−α}, where q1−α is the (1−α)-quantile of the

limiting distribution of T
(j)
ϕ,n. Part ii) of allows to approximate the power

function θT ∈ Θ 7→ π(θT ) = PθT (CR). As in [3], we have

π(θT ) ≈ 1− FN
(√

n

σ

(q1−α
2n

ϕ′′(1)−Dϕ(θ0, θT )
))

,

where σ2 is the variance of
∫
I m(θT , u) dG(j)(u) and FN is the cumulative

distribution function of the standard normal distribution. Moreover, the
sample size that ensures a desired power π is bn0c+ 1, where

n0 =
a+ b−

√
a(a+ 2b)

2Dϕ(θ0, θT )2
,

with a = σ2
[
F−1
N (1− π)

]2
and b = q1−αϕ′′(1)Dϕ(θ0, θT ).

4. Goodness-of-fit tests

In this section, we are interested in test of fit of the hypothesis H0 : C ∈
{Cθ, θ ∈ Θ} against the alternative H1 : C /∈ {Cθ, θ ∈ Θ}. On the basis of
the work of [4], we propose for model (j), the following Cramér-Von-Mises
type statistics of test.

Γ(j)
ϕ,n = n

∫

I

(
C(j)
n (u)− C

θ̂
(j)
ϕ

(u)
)2

dC(j)
n (u), j ∈ {I, II, III}.

In the next theorem, we give the asymptotic distribution of Γ
(j)
ϕ,n under H0.

Theorem 2. For model (j), we have under H0 and assumptions (j) and
H1–H3

i) The process
√
n
(
C

(j)
n − Cθ̂(j)ϕ

)
converges weakly to a centered Gauss-

ian process Λ
(j)
ϕ .
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ii) The statistic Γ
(j)
ϕ,n converges in distribution to

∫
I

(
Λ

(j)
ϕ

)2
(u) dC(u).

According to this theorem, the critical region of the test at level α ∈ (0, 1)

is CR = {Γ(j)
ϕ,n > q1−α}, where q1−α is the (1−α)-quantile of the distribution

of
∫
I

(
Λ

(j)
ϕ

)2
(u) dC(u).

Now, we study the asymptotic behavior of Γ
(j)
ϕ,n under H1. We need the

following assumption.
H5 Assume that C /∈ {Cθ, θ ∈ Θ} and that the pseudo-true value of θ

θ∗ϕ = arg sup
θ∈Θe

{∫

I
m(θ, u) dC(u)

}

exists and it is unique and satisfies

• The functions u ∈ I 7→ ∂m
∂θ (θ∗ϕ, u) and u ∈ I 7→ ∂2m

∂θ2
(θ∗ϕ, u) are

continuous from above and with discontinuities of the first kind.
• There exists a neighborhoodN ⊂ Θe of θ∗ϕ, such that the first and the

second partial derivatives with respect to θ of K1(θ, u) are dominated
on N by some integrable functions with respect to the Lebesgue
measure on R2.
• The matrix

∫
I(∂

2/∂θ2)m(θ∗ϕ, u) dCθ∗ϕ(u) is non singular.

Theorem 3. For model (j), we have under assumptions (j) and H5, Γ
(j)
ϕ,n

tends in probability to infinity.

This theorem shows that the Cramér-Von-Mises type test is consistent, i.e.,
its power tends to 1 as n tends to infinity.
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1. Introduction

In recent decades, the statistical analysis of the functional data has at-
tracted a lot of attention in the statistical mathematics. Such kind of data
are used in a variety of fields including econometrics, epidemiology, environ-
mental science and many others.
The monograph of Ferraty and Vieu (2006) is the first precursor in non-
parametric functional statistics estimation. They focus in the estimation of
the kernel method for conditional models and they established many asymp-
totic properties of regression, conditional quantile and conditional density
estimator have been obtained. In this context, of functional nonparametric
analysis, a lot of works are devoted to the estimations of the conditional
hazard function in both: independent or dependent data.
The first results were obtained by Ferraty et al. (2003). They studied
the almost complete convergence (with rate) of this model in several situa-
tions, including censored and/or dependent variables. For this topic, in the
context of strong mixing dependence. Quintela-del-Ŕıo (2008) has shown
that the kernel estimator presented by Ferraty et al. (2003) cited above is
strongly consistent and asymptotically normally distributed. A generaliza-
tion of these results in the spatial data case was obtained by Laksaci and
Mechab (2010). More specifically, they studied the almost complete con-
vergence of an adapted version of this estimator. The same authors have
treated the L2-convergence rate by giving the exact expression involved in
the leading terms of the quadratic error and the asymptotic normality of
the construct estimator (see, Laksaci and Mechab (2014)).
The quasi-association setting is a special case of weak dependence introduced
by Doukhan and Louhichi (1999) for real-valued stochastic processes. It was
applied by Bulinski and Suquet (2001) to real valued random fields and it

1
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2 HAMZA DAOUDI AND BOUBAKER MECHAB

generalizes the positively associated variables introduced by Esary et al.
(1967). The quasi-association dependency unifies both concepts (negative
and positive association). Recall that, there are a lot of works dealing with
the statistical analysis of positive and negative dependent random variables,
we cite for example, Bulinski and Shabanovich (1998) and Newman (1984)
and the references therein. Recently, there are few papers dealing with the
nonparametric estimation for quasi-associated random variables. We quote,
Douge (2010) studied a limit theorem for quasi-associated for random vari-
ables taking their values in a Hilbert space. Attaoui et al. (2015) studied the
asymptotic results for an M-Estimator of the regression function for quasi-
associated processes. Laksaci and Mechab (2016) studied the nonparametric
relative regression for associated random variables. The main contribution
of this work is the study of the estimator of the hazard function of Ferraty
et al. (2008) in case of associated data. the almost-complete convergence
1 (a.co.) is established (with speed) of a kernel estimator for the hazard
function of a real random variable conditioned by a functional explanatory
variable. Note that, like all asymptotic statistics nonfunctional parametric,
our result is related to the phenomenon of concentration of the probability
measure of the explanatory variable and regularity of the functional space
of the model. In this article, we discuss the asymptotic bias, dispersion of
the estimator function of hazard in Quasi-Associated case. we recall the
definition of Association:

definition 1. A sequence (Xn)n∈N of real random vectors variables is said
to be Quasi-Association (QA), if for any disjoint subsets I and J of N and

all bounded Lipschitz functions f : R|I|d → R and g : R|J |d → R satisfying

Cov(f(Xi, i ∈ I), g(Xj , j ∈ J)) ≤ Lip(f)Lip(g)
∑

i∈I

∑

j∈J

d∑

k=1

d∑

l=1

∣∣∣Cov(Xk
i , X

l
j)
∣∣∣

where Xk
i denotes the kth component of Xi,

Lip(f) = sup
x 6=y

|f(x)− f(y)|
||x− y||1

with ||(x1, ..., xk)||1 = |x1|+ · · ·+ |xk|.

definition 2. Let (H, < ., . >) a separable Hilbert space with a orthonormal
basis ek, k ≥ 1. A sequence (Xn)n ∈ IN of real random variables taking
values in H is said to be quasi-associated, with respect to the basis ek if for
any d ≥ 1, the d-dimensional sequence {(< Xi, ej1 >, ..., < Xi, ejd >), i ∈ N}
is quasi-associated. Observe that the definition of quasi-association in the
Hilbert space depends on the choice of the basis.

The paper is organized as follows: the next section we present our model.
Section 3 is dedicated to fixing notations and hypotheses. We state our main
results in Section 4. The Section 5 is devoted the proofs of the auxiliary
results.

1Let (zn)n∈N be a sequence of real r.v.’s; we say that zn converges almost completely
(a.co.) to zero if, and only if, ∀ε > 0,

∑∞
n=1 P(|zn| > ε) < ∞. Moreover, we say that the

rate of almost complete convergence of zn to zero is of order un (with un → 0) and we
write zn = Oa.co.(un) if, and only if, ∃ε > 0,

∑∞
n=1 P (|zn| > εun) <∞.

599



THE ALMOST COMPLETE CONVERGENCE OF THE CONDITIONAL HAZARD FUNCTION ESTIMATOR CASE ASSOCIATED DATA IN HIGH-DIMENSIONAL STATISTICS.3

2. The model

Consider Zi = (Xi, Yi)1≤i≤n be a n quasi-associated random identically dis-
tributed as the random Z = (X,Y ), with values in H × IR, where H is
a separable real Hilbert space with the norm ‖ . ‖ generated by an inner
product < ., . >.
We consider the semi-metric d defined by ∀x, x′ ∈ H/d(x, x′) =‖ x − x′ ‖.
In the following x will be a fixed point in H and Nx will denote a fixed
neighborhood of x and S will be fixed compact subset of IR.
We intend to estimate the conditional hazard function hx using n dependent
observations (Zi)i∈N draw from a random variables with the same distribu-
tion with Z where the regular version F x of the conditional distribution
function of Y given X = x exists for any x ∈ Nx. Moreover we suppose that
F x has a continuous density fx with respect to (w.r.t) Lebesgue’s measure
over IR. we define the function hazard hx, for y ∈ IR and F x(y) < 1, by

(1) hx(y) =
fx(y)

1− F x(y)
,

To this aim, we first introduce the kernel type estimator F̂ x of F x defined
by

(2) F̂ x(y) =

∑n
i=1K(h−1K d(x,Xi))H(h−1H (y − Yi))∑n

i=1K(h−1K d(x,Xi))
, ∀y ∈ IR

where K is the kernel, H is a given distribution function and hK = hK,n
(resp. hH = hH,n) is a sequence of positive real numbers.

We define the kernel estimator f̂x of fx by:

(3) f̂x(y) =

h−1H

n∑

i=1

K(h−1K d(x,Xi))H
′(h−1H (y − Yi))

n∑

i=1

K(h−1K d(x,Xi))

.

Where H ′ is the derivative of H.
Finally, the estimator of the conditional hazard function is ĥx defined by

(4) ĥx(y) =
f̂x(y)

1− F̂ x(y)
.∀y ∈ IR.

3. Notations and hypotheses

All along the paper, when no confusion will be possible, we will denote
by C or/and C ′ some strictly positive generic constants whose values are
allowed to change. The variable x is a fixed point in H, Nx is a fixed neigh-
borhood of x. We assume that the random pair Zi = {(Xi, Yi), i ∈ N} is
stationary quasi-associated processes. Let λk the covariance coefficient de-
fined as:

λk = sups≥k
∑

|i−j|≥s
λi,j
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where

λi,j =

∞∑

k=1

∞∑

l=1

| cov(Xk
i , X

l
j) | +

∞∑

k=1

| cov(Xk
i , Yj) | +

∞∑

l=1

| cov(Yi, X
l
j) | +cov(Yi, Yj) | .

Xk
i denotes the kth component of Xi defined as Xk

i :=< Xi, e
k >.

For h > 0, let B(x, h) := {x′ ∈ H/d(x′, x) < h} be the ball of center x and
radius h.
To establish the almost complete convergence of the estimator ĥx we need
to include the following assumptions:

(H1) P(X ∈ B(x, h)) = φx(h) > 0 and the function φx(h) is a differen-
tiable at 0.

(H2) The conditional density fx(y) satisfies the Hölder condition, that is
: ∀(x1, x2) ∈ Nx ×Nx, ∀(y1, y2) ∈ S2

|F x1(y1)− F x2(y2)| ≤ C
(
db1(x1, x2) + |y1 − y2|b2

)
, b1 > 0, b2 > 0

and

|fx1(y1)− fx2(y2)| ≤ C
(
db1(x1, x2) + |y1 − y2|b2

)
, b1 > 0, b2 > 0.

where S is a fixed compact subset of IR.
(H3) The kernelH is a differentiable function andH ′ is a positive, bounded,

Lipschitzian continuous function such that:
∫
|t|b2H ′

(t)dt <∞ and

∫
H

′2
(t)dt <∞.

(H4) K is a bounded continuous Lipschitz function such that:

C1[0,1](.) < K(.) < C
′
1[0,1](.)

where 1[0,1] is a indicator function.

(H5) The sequence of random pairs (Xi, Yi), i ∈ N is quasi-associated with
covariance coefficient λk, k ∈ N satisfying :

∃α > 0, ∃C > 0,such that λk ≤ Ce−αk

(H6) for all pairs (i, j), the joint distribution functions

Ψi,j(h) = IP [(Xi, Xj) ∈ B(x, h)×B(x, h)]

satisfy

0 < sup
i 6=j

Ψi,j(h) = O(φ2x(hk))

(H7) The bandwidths hK and hH are a sequences of positive numbers
satisfying:

lim
n→∞

log5n

nhjHφx(hK)
= 0, j = 0, 1.
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4. Main result: Pointwise almost complete convergence

Theorem 4.1. Under hypotheses (H1)-(H7), we have:

(5) |ĥx(y)− hx(y)| = O
(
hb1K + hb2K

)
+Oa.co

((
logn

nhHφx(hK)

) 1
2

)
.

Proof
The proof of theorem 4.1 is based on the following lemmas:

Lemma 4.2. Under hypotheses (H1)-(H4) and (H6), we have:

(6)
1

F̂ xD
(F̂ xN (y)− IEF̂ xN (y)) = Oa.co

((
logn

nφx(hK)

) 1
2

)
.

Corollary 4.3. Under hypotheses (H1)-(H4) and (H6), we have:

(7)
∞∑

i=1

IP
(
| F̂ xD |< 1/2

)
<∞.

Lemma 4.4. Under hypotheses (H1)-(H6), we have:

(8)
1

F̂ xD
(F x(y)− IEF̂ xN (y)) = O

(
hb1K + hb2K

)
.

Lemma 4.5. Under hypotheses (H1)-(H3) and (H6) , we have:

(9) F̂ xD(y)− IE(F̂ xD(y) = Oa.co

((
logn

nφx(hK)

) 1
2

)

Lemma 4.6. Under hypotheses (H1)-(H6), we have:

(10)
1

F̂ xD
(fx(y)− IEf̂xN (y)) = O

(
hb1K + hb2K

)
.

Lemma 4.7. Under hypotheses (H1)-(H4) and (H6), we have:

(11)
1

F̂ xD
(f̂xN (y)− IEf̂xN (y)) = Oa.co

((
logn

nhHφx(hK)

) 1
2

)
.

Lemma 4.8. Under hypotheses of the Theorem 4.1, we have:

(12) ∃δ > 0,
∞∑

i=1

IP
{
|1− F̂ x(y)| < δ

}
<∞.

5. Auxiliary results

First of all, we state the following lemmas.

Lemma 5.1. (See, Douge (2010)) Let (Xn)n∈IN be a quasi-associated se-

quence of random variables with values in H. Let f ∈ BL(H|I|) ∩ IL∞ and

g ∈ BL(H|J |) ∩ IL∞,for some finite disjoint subsets I, J ∈ IN. Then

Cov (f (Xi, i ∈ I), g(Xj , j ∈ J)) ≤ Lip(f)Lip(g)
∑

i∈I

∑

j∈J

∞∑

k=1

∞∑

l=1

∣∣∣Cov(Xk
i , X

l
j)
∣∣∣
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where (BL(Hu;u > 0) is the set of bounded Lipschitz functions f : Hu → IR
and IL∞ is the set of bounded functions.

Lemma 5.2. (See, Kallabis and Newmann (2006)).
Let X1, ...., Xn the real random variables such that IE(Xj) = 0and IP (| Xj |≤M) =
1 for allj = 1, ...., nand someM <∞, Let σ2n = V ar (

∑n
i=1 ∆i).

Assume,furthermore, that there exist K < ∞ and β > ∞ such that, for all
u-uplets (s1, ..., su) ∈ INu, (t1, ..., tv) ∈ INv with 1 ≤ s1 ≤ ... ≤ su ≤ t1 ≤
... ≤ tv ≤ n. the following inequality is fulfilled :

| cov(Xs1 ...Xsu , Xt1 ...Xtv) |≤ K2Mu+v−2ve−β(t1−su).

. Then,

IP


|

n∑

j=1

Xj |> t


 ≤ exp

{
− t2/2

An +B
1/3
n t5/2

}

for some :

An ≤ σ2n
and

Bn =

(
16nK2

9An(1− e−β) ∨ 1

)
2(K ∨M)

1− e−β .

6. Conclusion

In this communication, we present, we established the consistency prop-
erties (with rates) of the conditional hasard function with a functional ex-
plicatory variable for quasi-associated data, the pointwise almost complete
convergence (with rates) of the kernel estimate of this model are obtained,
For further work it will be interesting to establish the consistency properties
(with rates) of the conditional density function with a functional explicatory
variable for quasi-associated and censored data.
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THE EXISTENCE RESULT OF SOLUTION FOR
G-STOCHASTIC DIFFERENTIAL EQUATION

EL-HACÈNE CHALABI

Abstract. In this poster we preset the existence and the uniqueness
of the solution of system of stochastic di¤erential equations driven by
G-Brownian motion by using the Caratheodory approximation scheme.

2010 Mathematics Subject Classification. 60H05, 60H10, 60H99.

Keywords and phrases.G-expectation, G-brownian motion, G-stochastic
di¤erential equations, Caratheodory approximation scheme.

1. Define the problem

The Caratheodory approximation scheme has been used by several math-
ematicians to prove the existence theorem for the solutions of ordinary di¤er-
ential equations under mild regularity conditions. N. Caratheodory [2] was
the �rst to introduce this approximation for ordinary di¤erential equations.
The existence and the uniqueness of the solution Xt, for G�SDEs (1:1)

under di¤erent conditions was proved in ([1], [4], [5], [7] and [8]).
In this poster, we present the existence and the uniqueness of the solu-

tion for the following system of stochastic di¤erential equations driven by a
G�Brownian motion (SG�SDEs):8>>><>>>:

Xt = X0 +
R t
0 f1 (s;Xs; Ys) ds+

+
R t
0 f2 (s;Xs; Ys) d hBis +

R t
0 f3 (s;Xs; Ys) dBs

Yt = Y0 +
R t
0 g1 (s;Xs; Ys) ds+

+
R t
0 g2 (s;Xs; Ys) d hBis +

R t
0 g3 (s;Xs; Ys) dBs

Where (X0; Y0) is a given initial condition, (hBti)t�0 is the quadratic
variation process of the G�Brownian motion (Bt)t�0 and all the coe¢ cients
fi (t; x; y) ; gi (t; x; y) ; for i = 1; 2; 3; satisfy the Lipschitz and the linear
growth conditions with respect to (x; y) where the constants are time de-
pendant.
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The conditional tail expectation of a heavy-tailed
distribution under random censoring

Nour Elhouda Guesmia, Djamel Meraghni, Louiza Soltane

Laboratory of Applied Mathematics, Mohamed Khider University, Biskra, Algeria
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Abstract The conditional tail expectation (CTE) has the advantage, over the
very popular Value-at-Risk, of being a coherent risk measure. Hence, it has
become a very useful tool in �nancial and actuarial risk assessment. For such
quantity, [1] discussed the sample estimator and [2] proposed an estimator for an
important class of Pareto-like distributions. In this paper, we consider data that
are heavy-tailed and, at the same time, randomly censored. By making use of
survival and extreme value methodologies, we de�ne an estimator for the CTE
and we construct con�dence intervals and discuss their lengths and coverage
probabilities. Finally, we apply our results to a set of real data, namely the
survival times of Australian male Aids.

Keywords: Coherent risk measure; Conditional tail expectation; Extreme
value index; Heavy-tails; Hill estimator; Kaplan-Meier estimator.

1 Simulation study

We carry out a simulation study to illustrate the performance of our estimator,
through two sets of data from Burr (�; �) and Fréchet (�) models respectively
de�ned, for x � 0; by

�F (x) =
�
1 + x1=�

���=�
and �F (x) = 1� exp(�x�1=�);

where � and � are two positive parameters.
The con�dence intervals are constructed by the technique bootstrap, we use

the percentile con�dence intervals method.

2 Case study

In this section, we apply our estimation procedure to the dataset known as
Australian Aids data and provided by Dr P.J. Solomon and the Australian
National Centre in HIV Epidemiology and Clinical Research. It consists in
medical observations on 2843 patients (among whom 2754 are male) diagnosed
with Aids in Australia before July 1st, 1991 (See [3] and [4]).
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THE PERFORMANCE EVALUATION OF THE PATTERN

INFORMATICS METHOD: A RETROSPECTIVE ANALYSIS

FOR JAPAN AND THE IBERO-MAGHREB REGIONS

MERIEM BENHACHICHE AND ABDELHAK TALBI

Abstract. Forecasting aims to estimate the probability of earthquakes
occurrence in a given space-time volume. Among the typical examples
of forecasting methods: the Pattern Informatics (PI) method which is
based on the identification of the significant variations in space-time
seismicity rate. In this study, Japan and the Ibero-Maghrebian earth-
quake catalog are downloaded from the United States Geological Survey
(USGS) website. The Pattern Informatics method is applied to forecast
large earthquakes of magnitude m ≥ mt, in which the completeness
magnitude m ≥ mc. Results are presented as regional forecasting maps
showing areas with small, moderate and high probabilities of future
target earthquakes occurrence. The Relative Operating Characteristics
(ROC) and Molchan diagrams are used to evaluate the performance of
the Pattern Informatics method.

1. Define the problem

Define the problem Earthquakes are among the most natural disas-
ters as they pose a major risk. Indeed, one major earthquake can lead
to large human (dead, vagabonds, wounded) and material losses (build-
ing, houses, hospitals,. . . ). In this context, to avoid the occurrence of
earthquakes, we use the earthquake forecasting topic, as a step towards
mitigation of losses from casualties. In practice, forecasting aims to es-
timate earthquake occurrence probability in a given space-time volume.
Pattern Informatics method is among the forecasting methods that we
rely on in our study. It has been developed by Rundle et al. (2002),
Tiampo et al. (2002a, b, c), and Holliday et al. (2006). This method is
used to identify the space-time seismicity rate variations that occurred
in the past, and it can detect precursor seismic activation or quiescence.
For the PI analysis, the study regions are divided into a grid of equal-size
cells, with cell size l°* l°, the main input parameter to estimate the seis-
mic hazard map of any region is an earthquake catalogue. In practice,
the Ibero-Maghrebian and Japan regions are selected as study regions,
which are earthquake-prone areas, the earthquake catalogues are down-
loaded from the United States Geological Survey (USGS) website, with
completeness magnitude m mc. Furthermore, forecasting results are
resumed as PI forecasting maps with hotspots covering regions where
target earthquakes of magnitude m mt are mostly expected to occur.
Finally, the results testing plays a very important role in evaluating
the PI method performance. Here, we apply the Relative Operating
Characteristic (ROC) and Molchan diagrams.

2010 Mathematics Subject Classification. 42C05, 33C45.

Earthquakes Forecasting, Pattern Informatics, Forecast ver-
ification.
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THE PROPERTIES OF THE STOCHASTIC FLOW GENERATED BY THE

ONE-DEFAULT MODEL IN MULTI-DIMENSIONAL CASE

YAMINA KHATIR (1), ABDELDJEBBAR KANDOUCI (2), FATIMA BENZIADI (3),

(1,2,3) LABORATORY OF STOCHASTIC MODELS, STATISTICS AND APPLICATIONS

TAHAR MOULAY UNIVERSITY-SAIDA, ALGERIA

Abstract. In our research we will look at the differentiability of the solution of one-default model

with respect to initial value in multi-dimensional case. Precisely, We show the existence of the partial

derivative in the initial value basing on the idea of H-Kunita, R.M-Dudley and F-Ledrappier [2].

1. Introduction

We consider a following stochastic differential equation:

(\u) =





dXx
u,t = Xx

u,t

(
− e−Λt

1−Zt
Nt + f(Xt − (1− Zt))dYt

)
, t ∈ [u,∞[,

Xx
u,u = x,

where x is the initial condition.

This equation is called \−equation which is the priceless system in financial mathematics and it’s one

of the best ways to represent the evolution of a financial market after the default time, it’s considered

a prosperous system of parameters (Z, Y, f). the parameter Z determines the default intensity. The

parameters Y and f describe the evolution of the market after the default time τ .

Let’s move to the multidimensional version of \−equation [3]. On a probability space (Ω, (F)t≥0,P).

We have:

(\u) =





dXu,t(x) = Xt(x)
(
− e−Λt

1−Zt
dNt + F (Xt(x)− (1− Zt))dYt

)
, t ∈ [u,∞[,

Xu,u(x) = x,

Where (Λ1, ...,Λd) is d−dimensional is continuous increasing process null at the origin, Nt = (N1, ..., Nd)

is a given d−dimensional continuous non-negative local martingale such that 0 < Zt = Nte
−Λt < 1, t >

0 and (Z(t, w) = (Z1(t, w), ..., Zd(t, w)) presents the default intensity. (Y (t, w) = (Y 1(t, w), ..., Y n(t, w))

is a given n−dimensional continuous local martingale and F = (F1, ..., Fn) on Rn is Lipschitz mapping

null at the origin.

Key words and phrases. Credit risk; Stochastic flow; Stochastic differential equations; Diffeomorphism.
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This equation has a unique solution Xu,t(x) such as;

Xu
t = x+

∫ t

u

Xs

(
− e−Λs

1− Zs

)
dNs +

∫ t

u

Xs

d∑

i=1

n∑

j=1

F ij(Xs − (1− Zs))dY
j
s , s ∈ [u, t]

where Xu
u = x is the initial condition and F ij is i− th component of the vector function F j .

2. Properties Of Stochastic Flows.

Let ζs,t(x, ω); s, t ∈ [0, T ], x ∈ Rd be continuous Rd−valued random field defined on the probability

space (Ω,F ,P)

Definition 2.1. Stochastic flow of homeomorphisms(or simply a flow) is a map ζs,t(ω) ≡ ζs,t(., ω)

defines from Rd into itself for almost all ω indexed by tow parameters s and t such that s < t, the first

represents the initial time of the flow and the second represents the state of the flow and it satisfies

the following properties:

(1) For any x ∈ Rd, ζs,t(ω) is continuous.

(2) The map ζs,t : Rd −→ Rd is a homeomorphism for any s, t.

(3) ζs,t(ω) is k−times continuously differentiable with respect to x for all s, t ∈ Rd.

(4) ζt,u(ζs,t(ω)) = ζs,u(ω) for any s, u, t and any x. and ζs,s(ω) = IdRd for any s.

If additionally ζs,t(ω) satisfies also properties (2)and (3). It is called stochastic flow Ck−diffeomorphisms.

3. Description of the work to be carried out

In our work we had demonstrated the differentiability of the solution of the one-default model in

multi-dimensional case under the following hypothesis: the coefficients of \−equation are Lipschitz

and the processes represented in this equation take real values.
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THRESHOLD SPATIAL NON-DYNAMIC PANEL DATA

YACINE BELARBI, FAYÇAL HAMDI, AND IMANE REHOUMA

Abstract. In this work, we introduce a new threshold spatial non-
dynamic panel data model, which extends the classical spatial panel
data (SPD) with fixed effects. We introduce a threshold variable to
examine the non-linearity and the heterogeneity of the spatial effects
in SPD models. We first provide a quasi-maximum likelihood (QML)
method to estimate the parameters of the proposed model. We thus
develop linearity test. This test occupy a prominent place and guides us
in the choice of specification to take into account the non-linearity if it
exists. We finally show, through a Monte Carlo study, that the proposed
QML estimation and test procedures provide good results.

2010 Mathematics Subject Classification. 91B72, 62P20.

Keywords and phrases. Spatial model, Panel data,Threshold model,
Linearity test.

1. Define the problem

Panel data models with spatial interactions have received a lot of interest
since the work of Anselin (1988) in the field of econometrics. A number
of different settings, such as model with spatial lag or spatial error, static
or dynamic, fixed or random individual effect, temporal effect, have been
explored and their corresponding estimation methods were established.
Indeed, Aquaro et al. (2015) have introduced regional heterogeneity for spa-
tial panel data. Deng (2018) have proposed a threshold spatial autoregres-
sive (TSAR) model with varying spatial parameters for different regimes. In
this model, the slopes of all exogenous regressors remain the same for differ-
ent regimes. Zho et al. (2020) generalized the TSAR model by considering a
threshold spatial Durbin (TSD) model, which allows for heterogeneous slope
coefficients for both spatial lags and all exogenous. It should be pointed out
that TSAR and TSD models are very useful but limited to cross-section
data modeling.
On the other hand, it is widely documented that many extensions and math-
ematical developments of threshold models have been adopted for the anal-
ysis of panel data structures. Hansen (1999) proposed a panel threshold
regression (PTR) model for the non-dynamic panel case. His main con-
tribution lies in the possibility of allowing the individuals constituting the
panel to be in different regimes during a given period. This enables the het-
erogeneity in the panel to be better captured and allows for a visualization of
the non-linearity in the interaction between the dependent variable and the
explanatory variables for each panel’s component. However, this study do
not explore estimation and testing issues under spatial dependence. In this
work, we extend the threshold model to a spatial panel with fixed effects,

1
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where we applied to spatial panel data the same approach as is usually used
in threshold time series models. In this model, an individual may have a
dynamic different from the others. Through this threshold regime switching
mechanism, we analyze the heterogeneity in the spatial panel and how the
exogenous threshold variable impacts the dependent variable.
We consider a threshold spatial non-dynamic panel data with two regimes
where each regime is represented by a classical balanced spatial panel data
with spatial dependence.
The model is defined as:

yi,t =





λ1

n∑
j=1

wi,jyj,t + xi,tβ1 + εi,t if qi,t ≤ γ

λ2

n∑
j=1

wi,jyj,t + xi,tβ2 + εi,t if qi,t > γ
(1)

εi,t = µi + vi,t

Where the subscript i represent cross-section (i = 1, 2, ..., n) and t is the
time periods (t = 1, 2, ..., T ). yi,t is a scalar dependent variable, the variable
n∑
j=1

wi,jyj,t denote the interaction effect of the dependent variable yi,t with

the dependent variable yj,t in neighbouring unit and wi,j is the (i, j) th el-
ement of a constant spatial weight matrix W . λi (i = 1, 2) scalars of these
endogenous interaction, xi,t is a (1 × k) vector of exogenous variable, βi
(i = 1, 2) represents the slope coefficients that differ for each regime, vi,t is a
independent and identically distributed variable with 0 mean and σ2 finite
variance , µi is the individual effect. qi,t is the threshold variable and γ is
the threshold parameter.

In this communication, we describe a straightforward procedure for esti-
mating our threshold spatial non-dynamic panel model via a quasi-maximum
likelihood method. We deal also with the issue of inference in our spatial
panel data framework where we present the test of linearity based on a
bootstrap approach. We finally show, through a Monte Carlo study, that
the proposed QML estimation and test procedures provide good results.
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Résumé
Dans cette travaille, nous nous proposons une nouvelle distribution de durée

de survie basé sur les modèles tronqués cette distribution est nommée la distri-
bution de Poison Peudo Lindley tronquée à zero. Cette distribution dépend de
deux paramètres, l�un est un paramètre de forme et l�autre c�est un paramètre
d�échelle. Nous exposons aussi l�étude des estimateurs on utilise une approche
classique du maximum de vraisemblance et la méthode des moments. Dans le
cas de l�approche classique, les estimateurs sont des solutions d�un système non
linéaire dont les solutions ne sont pas explicites analytiquement, des méthodes
numériques sont été adoptées. Finalement, une étude par simulation et une
analyse de données réelles ont été réalisées pour comparer le
modèle introduit avec d�autres modèles tronqués à un seul et à deux paramètres.
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UNIFORM CONSISTENCY OF A NONPARAMETRIC

RELATIVE ERROR REGRESSION ESTIMATOR FOR

FUNCTIONAL REGRESSORS UNDER RIGHT

CENSORING

OMAR FETITAH, IBRAHIM M. ALMANJAHIE, MOHAMMED KADI ATTOUCH,
AND ALI RIGHI

Abstract. In this paper, we investigate the asymptotic properties of
a nonparametric estimator of the relative error regression given a func-
tional explanatory variable, in the case of a scalar censored response,
we use the mean squared relative error as a loss function to construct a
nonparametric estimator of the regression operator of these functional
censored data. We establish the strong almost complete convergence
rate and asymptotic normality of these estimators. A simulation study is
performed to illustrate and compare the higher predictive performances
of our proposed method to those obtained with standard estimators.

2010 Mathematics Subject Classification. 62G05, 62G08, 62G20,
62G35, 62N01.

Keywords and phrases. Relative error regression, Censored data,
nonparametric kernel estimation, functional data analysis, almost com-
plete convergence, asymptotic normality, small ball probability.

1. Introduction

Modeling functional variables have received increasing interest in the last
few years from mathematical or application points of view. There are many
results for nonparametric models for more details on the subject, and we
refer the reader to the monograph of [5].

The study of a scalar response variable Y given a new value for the ex-
planatory variable X is an important subject in nonparametric statistics.
This regression relation is modeled by:

(1) Y = r(X) + ε,

where r(·) is the regression function and ε a sequence of error independent
to X.

Usually, r(·) = E[Y |X] is estimated by minimizing the mean squared loss
function. However, this loss function is based on some restrictive conditions
that is the variance of the residual is the same for all the observations, which
is inadequate when the data contains some outliers.

When the predicted values are large or when the data contain many out-
liers, the following criterium

(2) E

[(
Y − r(X)

Y

)2

|X
]
, for Y > 0

1
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is a more meaningful measure of the prediction performance than the least
square error. Notice that this kind of model, so-called relative error regres-
sion, has been widely studied in parametric regression analysis. When the
first two conditional inverse moments of Y given X are finite, the solution is
given by the minimization of the sum of absolute relative errors for a linear
model of the following ratio:

(3) r(x) =
E[Y −1|X = x]

E[Y −2|X = x]
.

The least absolute relative error estimation for multiplicative regression
models was proposed by [3], who proved consistency and asymptotic normal-
ity of their estimator and also provided an inference approach via random
weighting. [9] discussed the asymptotic efficiency of relative logistic regres-
sion in a parametric context, particularly when explanatory variables are
normally distributed. Moreover, [6] has built a consistent estimator for this
model using the kernel method. They established asymptotic properties,
especially its quadratic convergence, in the case where the observations are
independent and identically distributed.

The literature on the relative error regression (RER) in nonparametric
functional data analysis is still not very developed. The first consistent
results were obtained by [2], where relative regression was used as a classifi-
cation tool. For the kernel method combined with the local linear method,
[6] gives the asymptotic properties of the nonparametric prediction via rel-
ative error regression. Recently, [1] proposed a kernel regression estima-
tor version in the spatial framework context and derived asymptotically
and numerically the effectiveness of this kind of estimator, whereas [4] pro-
posed a functional version of the relative kernel regression estimator while [8]
proposed a nonparametric method estimation for deconvolution regression
model using relative error prediction.

2. Model

In the censoring case, instead of observing the lifetimes Y (which has a
continuous distribution function (df) H) we observe the censored lifetimes
of items. That is, assuming that (Ci)1≤i≤n is a sequence of i.i.d. censoring
random variable (r.v.) with common unknown continuous df G. Then, in
the right censorship model, we only observe the n pairs (Ti, δi) with

(4) Ti = Yi ∧ Ci and δi = 1{Yi≤Ci}, 1 ≤ i ≤ n,

where 1A denotes the indicator function of the set A.
Now, we assume that (Ci)1≤i≤n and (Xi, Yi)1≤i≤n are independent. In

censorship model, only the (Xi, Ti, δi)1≤i≤n are observed. For any df L, we
will write τL = sup{t : L̄(t) > 0}, where L̄(.) = 1 − L(.) On the other
hand, Ln(.) will denote a functional estimator of L(.). Denote by r̃(x) the
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estimator of r(x) in presence of censored data. Then,

(5) r̃(x) =

n∑

i=1

δiT
−1
i

Ḡ(Ti)
K

(
d(x,Xi)

h

)

n∑

i=1

δiT
−2
i

Ḡ(Ti)
K

(
d(x,Xi)

h

) =:
g̃1(x)

g̃2(x)
,

where

g̃l(x) =

n∑

i=1

δiT
−l
i

Ḡ(Ti)
K

(
d(x,Xi)

h

)

nE
[
K
(
d(x,X1)

h

)] , for l = 1, 2

In practice, G is unknown. So, we use the Kaplan-Meier estimator in [7] of
Ḡ given by

(6) Ḡn(t) =

{ ∏n
i=1

(
1− 1−δ(i)

n−i+1

)1{T(i)≤t}
if t ≤ T(n)

0 otherwise,

where T(1) ≤ T(2) ≤ ... ≤ T(n) are the order statistics of (Ti)1≤i≤n and δ(i) is
the concomitant of T(i). Therefore, the estimator of r(x) is given by

(7) r̃n(x) =

n∑

i=1

δiT
−1
i

Ḡn(Ti)
K

(
d(x,Xi)

h

)

n∑

i=1

δiT
−2
i

Ḡn(Ti)
K

(
d(x,Xi)

h

) =:
g̃1,n(x)

g̃2,n(x)
,

where

g̃l,n(x) =
1

nE
[
K
(
d(x,X1)

h

)]
n∑

i=1

δiT
−l
i

Ḡn(Ti)
K(

d(x,Xi)

h
) for l = 1, 2.

3. Assumptions and main results

The main purpose of this section is to study the uniform almost-complete
convergence1(a.co.) of r̃n(x) toward r(x).

From now on, for all x in F , for all positive real h, and denote by Nx the
neighborhood of the point x, when no confusion is possible, we will denote
by c and c′ generic constants and define Ki(x) by

Ki(x) = K

(
d(x,Xi)

h

)
for i = 1, ..., n,

where K is a kernel function and h := hn,K is a sequence of positive numbers
decreasing toward 0. We will also use the notation

(8) ϕx(h) = P(X ∈ B(x, h)),

where B(x, h) = {x′ ∈ F , d(x, x) ≤ h}.
1Let (Zn)n∈N be a sequence of real r.v.’s. We say that Zn converges almost completely

(a.co.) toward zero if and only if ∀ε > 0,
∑∞

n=1 P(|Zn| > ε) < ∞. Moreover, we say that
the rate of the almost complete convergence of Zn to zero is of order un (with un → 0) and
we write Zn = O(un) a.co. if and only if ∃ε > 0 such that

∑∞
n=1 P(|Zn| > εun) < ∞. This

kind of convergence implies both almost sure convergence and convergence in probability.
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We recall the definition of the Kolmogorov’s entropy which is an important
tool to obtain uniform convergence results. Given a subset SF ⊂ S and ε >
0, denote Nε(S) or N the minimal number of open balls of radius ε needed to
cover S. Then, the quantity ψSF = log(N) is called Kolmogorov’s ε-entropy
of the set S. In what follows, we will need the following assumptions:

(H1): P(X ∈ B(x, h)) =: ϕx(h) > 0 for all h > 0 and lim
h→0

ϕx(h) = 0.

(H2): For all (x1, x2) ∈ N 2
x , we have

|gl(x1)− gl(x2)| ≤ cdkl(x1, x2) for kl > 0.

(H3): The kernel K is a bounded Lipshitzian and differentiable func-
tion on its support (0; 1) and satisfying:

0 < c ≤ K(.) ≤ c′ < +∞,

and its first derivative function K ′ is such that: −∞ < c < K ′(.) <
c′ < 0.

(H4): The bandwidth h satisfies:

(i):
√

log logn
n = o(ϕx(h));

(ii): nϕx(h)
logn →∞ as n→∞.

(H5): The response variable Y is such that: |Y | > c > 0 for all x ∈ F
and

inf
x∈F

g2(x) ≥ γ > 0.

(H6): The functions ϕx and ψSF are such that:
(H6a): there exists η0 > 0 such that for all η < η0, ϕ

′
x(η) < c,

where ϕ′x denotes the first derivative function of ϕx.
(H6b): for a large enough integer n, we have:

(log n)2

nϕx(h)
< ψSF

(
log n

n

)
<
nϕx(h)

log n
,

(H6c): the Kolmogorov’s ε-entropy of SF satisfies:

∞∑

n=1

exp

[
(1− β)ψSF

(
log n

n

)]
<∞ for some β > 1.

Now we are in a position to give our main result.

Theorem 3.1. Under Assumptions (H1)-(H6), we have
(9)

sup
x∈F
|r̃n(x)− r(x)| = Oa.co.

(
hk1
)

+Oa.co.

(
hk2
)

+Oa.co.




√√√√ψSF

(
logn
n

)

nϕx(h)


 .
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3.1. Proofs of Theorem 3.1. From (9), we can see that:

sup
x∈F
|r̃n(x)− r(x)| ≤ sup

x∈F

{∣∣∣∣
g̃1,n(x)

g̃2,n(x)
− g̃1(x)

g̃2,n(x)

∣∣∣∣+

∣∣∣∣
g̃1(x)

g̃2,n(x)
− E(g̃1(x))

g̃2,n(x)

∣∣∣∣

+

∣∣∣∣
E(g̃1(x))

g̃2,n(x)
− g1(x)

g̃2,n(x)

∣∣∣∣+

∣∣∣∣
g1(x)

g̃2,n(x)
− g1(x)

g2(x)

∣∣∣∣
}

≤ 1

inf
x∈F
|g̃2,n(x)|

{
sup
x∈F
|g̃1,n(x)− g̃1(x)|+ sup

x∈F
|g̃1(x)− E(g̃1(x))|

+ sup
x∈F
|E(g̃1(x))− g1(x)|

}
+

sup
x∈F
|g1(x)|γ−1

inf
x∈F
|g̃2,n(x)|

{
sup
x∈F
|g̃2,n(x)− g̃2(x)|

+ sup
x∈F
|g̃2(x)− E(g̃2(x))|+ sup

x∈F
|E(g̃2(x))− g2(x)|

}
.

Therefore, Theorem 3.1’s result is a consequence of the following intermedi-
ate results, where their proofs are postponed to the appendix.

Lemma 3.2. Under assumptions (H2)-(H5), we have

(10) sup
x∈F
|g̃l,n(x)− g̃l(x)| = Oa.s.

(√
log log n

n

)
, with l ∈ {1, 2}.

Where Oa.s. means the rate of the almost sure convergence.

Lemma 3.3. Under assumptions (H1)-(H3) and (H5), we have

(11) sup
x∈F
|E(g̃l(x))− gl(x)| = O

(
hkl
)
,

withe l ∈ {1, 2}.
Lemma 3.4. Under assumptions (H1)-(H3) and (H6), we have

(12) sup
x∈F
|g̃l(x)− E(g̃l(x))| = Oa.co.




√√√√ψSF

(
logn
n

)

nϕx(h)


 ,

withe l ∈ {1, 2}.
Corollary 3.5. Under the assumptions of lemma 3.3 and 3.4, we obtain:

(13) there exists δ > 0 such that

∞∑

n=1

P
(

inf
x∈F
|g̃2,n(x)| < δ

)
<∞.

4. Simulation study

In order to see the behavior of our proposed estimator, we consider the
curves generated in the following way:

Xi(t) = ai sin(4(bi − t)) + bi + ηi,t i = 1 : 200 t ∈ [0, 1[,

where ai ∼ N (5, 2), bi ∼ N (0, 0.1) and ηi,t ∼ N (0, 0.2). All the curves
are discretized on the same grid generated from m = 150 equispaced points
t ∈ [0, 1[. The observations Yi’s for i = 1, ..., n are generated from the model

Yi = r(Xi) + εi where εi ∼ N (0, 0.01),
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where

r(x) =

∫ 1

0

dt

1 + |x(t)| .

In practice, the semi-metric choice is based on the regularity of the curves
which are under study. In our case, regarding the shape of the curves Xi, it
is clear that the PCA-type semi-metric (cf. [5]) is well adapted to this data
set. It should also be noticed that the best results concerning prediction
are obtained for q = 4 (the number of components in the PCA-type semi-
metric). The optimal bandwidth h is chosen by the cross-validation method
for the k nearest neighbors (kNN) in a local way.
We select the quadratic kernel for both classic and relative estimators defined
by

K(u) =
3

2
(1− u2)1(0,1).

Next, we consider a sample of size n = 200 and we split the data generated
from the model above into two subsets: a training sample (Xi, Ti, δi), i =
1, ..., 150 and a test sample (Xi, Ti, δi), i = 151, ..., 200. Then, we calculate

the estimator θ̂(Xi) for any i ∈ {151, ..., 200}.

We also, simulate n i.i.d. rv’s Ci, i = 1, ..., n with law E(λ) (the exponen-
tial law with the λ parameter that controls the censorship rate).

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
−

5
0

5

Curves

t

X
(t

)

Figure 1. The curves Xi=1,...,100(t), t ∈ [0, 1[.

The performance of both estimators was compared under the mean squared
prediction error (MSE) criterion:

MSE =
1

50

200∑

j=151

(θ(Xj)− θ̂(Xj))
2,
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where θ̂(Xj) means the estimator of both regression models and θ(Xj) the
response variable.

1) Data without outliers : The obtained results are shown in Figure 2.
With the censorship rate CR = 1.33%, it is clear that there is no meaningful
difference between the two estimation methods: the Classical Kernel Estima-
tor (CKE) and the Relative Error Estimator (REE) (MSECKE = 0.00038,
MSEREE = 0.00048).
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Figure 2. comparison between the Classical Kernel Estima-
tor (CKE) and the Relative Error Estimator (REE) without
outliers.

2) Data with outliers : Here, we concentrate on the comparison of
both models’ performances in the presence of outliers. For this aim, we
introduce artificial outliers by multiplying some values of Y in the training
sample by 10. The estimators of both models are obtained by the same pre-
vious selection methods of the smoothing parameter, i.e., the same metric
d and also the same kernel K. Finally, the obtained results are shown in
Table 1 and displayed in Figure 3. Note that, in Figure 2 the two esti-

Table 1. MSE for the Classical Kernel Estimator (CKE)
and the Relative Error Estimator (REE) according to num-
bers of introduced artificial outliers.

Number of artificial outliers 0 10 30 50
Classical Kernel Estimator MSECKE 0.00076 0.02520 3.98068 434.82333
Relative Error Estimator MSEREE 0.00060 0.00064 0.00072 0.00054

mators are equivalent but in Figure 3, in which we considered the presence
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Figure 3. comparison between the Classical Kernel Estima-
tor (CKE) and the Relative Error Estimator (REE) in the
presence of outliers.

of outliers, the relative error regression is robust than the classical kernel
regression; i.e., the classical kernel method is susceptible to the presence of
outliers. Now, we will study the behavior of our estimator with different
censored rates (CR). The results are shown in Table 2. We see that the
quality of fit is affected and becomes worse as the CR increases, but the rel-
ative error estimator is more efficient than the classical one in the presence
of censoring data.

Table 2. MSE for the Classical Kernel Estimator (CKE)
and the Relative Error Estimator (REE) according to to the
censoring rates with different sample size.

Sample size CR MSECKE MSEREE
10% 0.00239 0.00203

100 20% 0.00613 0.00366
60% 0.01483 0.00679
10% 0.00175 0.00182

200 20% 0.00545 0.00292
60% 0.01155 0.00576
10% 0.00100 0.00051

600 20% 0.00860 0.00284
60% 0.01179 0.00408
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• Belaada Abdelaziz

• Belaidi Mohamed

• Belatrache Djamel

• Belgacem Rachid

• Belhadji Bochra

• Bellatrach Nadjet

• Bellour Azzeddine

• Belouafi Mohammed Essaid

• Ben Attia Messaouda

• Ben Makhlouf Abdellatif

• Benahmed F

• Benaissa Bouharket

• Benaissa Lakhdar

• Benaissa Cherif Amin

• Benaklef Nesrine

• Benallou Mohamed

• Benaouad Nour Imane

• Benbernou Saadia

• Benchaira Souad

• Bencherif Madani Abdelatif

• Bencherif Madani Abdelatif

• Bendouma Bouharket

• Benhachiche Meriem

• Benhiouna Salah

• Bennenni Nabil

• Bensaid M’hamed

• Bensikaddour Djemaia

• Benterki Rebiha

• Benterki Abdessalem

• Benzamouche Sabrina Ouardia

• Berrehail Chems Eddine

• Bezai Assia
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• Boua Abdelkarim

• Bouaicha Nour El Houda

• Bouajaji Rachid

• Bouakkaz Ahlème

• Bouanani Oussama

• Bouaziz Tayeb

• Bouazza Imane

• Bouchenak Ahmed

• Boudraa Abderrahmane

• Boughaba Souhila

• Boughambouz Hamza

• Bouguebrine Soufyane

• Bouguerne Hamza

• Bouhoufani Oulia

• Boukabache Akram

• Boukarou Aissa

• Boukaroura Ilyas

• Boukehila Ahcene

• Boukeloua Mohamed

• Boulanouar Ranya Djihad

• Boulares Salah

• Boulkemh Loubna

• Boulmerka Imane

• Boumediene Amina

• Bounibane Bachir

• Bounif Maymanal

• Boureghda Abdelouahab

• Bouremel Hassane

• Bouriche Sihem

• Bouslah Zineb

• Boutaf Fatima Zohra

• Bouternikh Salih
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• Bouzir Habib

• Brahimi Tahar

• Brairi Houssem

• Chadi Khelifa

• Chaghoub Soraya

• Chahrazed Lellou

• Chalabi Elhacène

• Chattouh Abdeldjalil

• Chebbab Ikhlasse

• Cherchem Ahmed

• Chillali Abdelhakim

• Chorfi Nouar

• Chouaf Safa

• Chouia Abdallah

• Chouial Hanane

• Daoudi Hamza

• Dassa Meriyam

• Dehilis Sofiane

• Dehimi Souheyb

• Delhoum Zohra Sabrina

• Derbazi Choukri

• Derdar Nedjemeddine

• Derrech Amal

• Dib Nidal

• Dib Joanna

• Dilmi Amel

• Djaouida Guettal

• Djellab Nadjate

• Djemmada Yahia

• Djeridi Zohra

• Djeriou Aissa

• Dob Sara
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• Douaifia Redouane

• El Amir Djeffal

• El Hamdaoui Mohammadi

• El Hendi Hichem

• Elemine Vall Mohamed Saad Bouh

• Elharrar Noureddine

• Elmansouri A

• Elong Ouissam

• Faghmous Chadia

• Faraoun Amina

• Fareh Souraya

• Farida Hamrani

• Fatna Bensaber

• Ferradi Athmane

• Ferraoun Amina

• Fethi Latti

• Fetitah Omar

• Fetouci Nora

• Founas Besma

• Frihi Zahrate El Oula

• Gacem Ilhem

• Ghecham Wassila

• Gheliem Asma

• Gheraibia Billel

• Gherbi Fares

• Gheribi Bochra

• Gherici Beldjilali

• Ghouar Ahlem

• Guelil Abdelhamid

• Guemoula Asma

• Guesba Messaoud

• Guesmia Nour Elhouda
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• Guesraya Sabrina

• Hacini Mohammed El Mahdi

• Hadj Abdelhak

• Hadj Ammar Tedjani

• Hadjabi Fatima

• Haffaf Hadjer Wafaâ

• Hakim Maroua

• Hamdaoui Abdenour

• Hamdi Brahim

• Hamidi Khaled

• Hammou Asma

• Hamour Boussad

• Hamri Douaa

• Hanifi Zoubir

• Haoues Moussa

• Hariri Mohamed

• Hassiba Benseradj

• Hazzam Nadia

• Hebchi Chaima

• Hedid Manal

• Hemmi Asma

• Heraiz Rabah

• Hizia Bounadja

• Hocine Abbassi

• Ikram Bouzoualegh

• Ilhem Mous

• Imad Rezzoug

• Imed Bouaker

• Ishaq Muhammad

• Kada Driss

• Kada Maissa

• Kaid Rachida
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• Kainane Mezadek Mourad

• Kamache Fares

• Kamache Houria

• Kamouche Somia

• Kara Mohamed Abdelhak

• Kara Terki Nesrine

• Karfes Sana

• Kasmi Abderrahmane

• Kasri Hichem

• Kasri Abderrezak

• Keddar Naima

• Keddi Abdelmalik

• Kehila Walid

• Kessal Hanane

• Khadidja Mebarki

• Khaldi Nassima

• Khalfi Abderaouf

• Khalouta Ali

• Khan Ahmad

• Khan Abdullah

• Khatir Yamina

• Kheira Mekhalfi

• Khelladi Samia

• Khenfer Sakina

• Kina Abdelkrim

• Kouidere Abdelfatah

• Labadla Amel

• Labbani Rebiha

• Lachouri Adel

• Ladaci Samir

• Ladaouri Nour El Hayet

• Ladjeroud Asma
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• Ladrani Fatima Zohra

• Laiadi Abdelkader

• Laib Ilias

• Laid Messalti

• Lakhdar Asmaa

• Laksaci Noura

• Lalili Hadjira

• Latioui Naaima

• Latreche Soumia

• Latreche Faiz

• Lecheheb Samira

• Lejdel Ali Tefaha

• Letoufa Yassine

• Limam Abdelaziz

• Linda Menasria

• Louiza Derbal

• Louzzani Noura

• Madjour Farida

• Mahmoudi Neima

• Manaa Soumia

• Manaa Abderrahmen

• Manal Djaghout

• Mansouri Bouzid

• Matallah Atika

• Mecemma Imene

• Mecheri Hacene

• Mechrouk Salima

• Medjadj Imene

• Meftah Safia

• Mehenni Abdelkrim

• Mekdour Fateh

• Mekkaoui Mohammed
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• Melik Ammar

• Melki Mounira

• Melki Houdeifa

• Menad Mohamed

• Menkad Safa

• Meriem Louafi

• Merzouk Hind

• Mesbah Nadia

• Mesbahi Salim

• Mesri Fatima

• Mezerdi Meriem

• Mezerdi Mohamed Amine

• Meziani Sara

• Mezouar Nadia

• Midoune Noureddine

• Milles Soheyb

• Miloudi Hakima

• Mohamed Kecies

• Mohamed Omane

• Mohamed Benrabia

• Mohamed Helal

• Mohamed Tahar Mezeddek

• Mohammed Meraou

• Mokhtar Kadi

• Moufek Hamza

• Moumen Latifa

• Mourad Chelgham

• Mourad Yettou

• Mohammed Said Touatibrahim

• Nabila Barrouk

• Naceri Mokhtar

• Nadhir Bendrici
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• Nadir Rezzoug

• Naima Meskine

• Naimi Abdellouahab

• Nasli Bakir Aissa

• Nawaz Asif

• Nemer Ahlem

• Nesraoui Riyadh

• Noui Djaidja

• Omar Benniche

• Omar Bouichir

• Ouaoua Amar

• Ouffa Souheyla

• Rabah Gherdaoui

• Rachid Lakehal

• Rachid Belgacem

• Radjai Abir

• Rafiq Muhammad

• Rahai Amira

• Rakdi Mohamed Anouar

• Rakdi Mohamed Anouar

• Ramdani Hayat

• Ramdani Zoubir

• Ramdani Nedjem Eddine

• Raouda Chettouh

• Rassoul Abdelkader

• Rayhana Rezzag Bara

• Redjouh Mounir

• Reguig Yasmina

• Rehouma Imane

• Rihane Salah Eddine

• Rima Faizi

• Rimi Khezzani
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• Sabah Benadouane

• Saadaoui Kheir

• Saba Nabiha

• Sadik Azeddine

• Saffidine Khaoula

• Saffidine Rebiha

• Sahabi Toufik

• Saidani Mansouria

• Saidi Amel

• Saidi Soumia

• Samia Youcefi

• Samia Ghalia

• Sarah Ghettab

• Sarra Boudaoud

• Sarwar Muahammad Amad

• Seba Djillali

• Sebih Mohammed Elamine

• Selikh Bilel

• Selmani Wissame

• Semchedine Nesrine

• Sidahmed Benchiha

• Sidi Ali Fatima Zohra

• Siham Bey

• Slimani Mohammed Asseddik

• Smail Kaouache

• Smain Fatiha

• Souaad Azil

• Souakri Roufaida

• Souilah Rezak

• Soukeur El Hussein Iz El Islam

• Soumia Bourchi

• Tabharit Louiza
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